finsler manifold
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 19)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Csaba Vincze

AbstractGeneralized Berwald manifolds are Finsler manifolds admitting linear connections such that the parallel transports preserve the Finslerian length of tangent vectors (compatibility condition). It is known (Vincze in J AMAPN 21:199–204, 2005) that such a linear connection must be metrical with respect to the averaged Riemannian metric given by integration of the Riemann-Finsler metric on the indicatrix hypersurfaces. Therefore the linear connection (preserving the Finslerian length of tangent vectors) is uniquely determined by its torsion. If the torsion is zero then we have a classical Berwald manifold. Otherwise, the torsion is some strange data we need to express in terms of the intrinsic quantities of the Finsler manifold. The paper presents the idea of the extremal compatible linear connection of a generalized Berwald manifold by minimizing the pointwise length of its torsion tensor. It is uniquely determined because the number of the Lagrange multipliers is equal to the number of the equations for the compatibility of the linear connection with the Finslerian metric. Using the reference element method, the extremal compatible linear connection can be expressed in terms of the canonical data as well. It is an intrinsic algorithm to check the existence of compatible linear connections on a Finsler manifold because it is equivalent to the existence of the extremal compatible linear connection.


Author(s):  
Tianyu Ma ◽  
Vladimir S. Matveev ◽  
Ilya Pavlyukevich

AbstractWe show that geodesic random walks on a complete Finsler manifold of bounded geometry converge to a diffusion process which is, up to a drift, the Brownian motion corresponding to a Riemannian metric.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ming Xu

Abstract We study the interaction between the g.o. property and certain flag curvature conditions. A Finsler manifold is called g.o. if each constant speed geodesic is the orbit of a one-parameter subgroup. Besides the non-negatively curved condition, we also consider the condition (FP) for the flag curvature, i.e. in any flag we find a flag pole such that the flag curvature is positive. By our main theorem, if a g.o. Finsler space (M, F) has non-negative flag curvature and satisfies (FP), then M is compact. If M = G/H where G has a compact Lie algebra, then the rank inequality rk 𝔤 ≤ rk 𝔥+1 holds. As an application,we prove that any even-dimensional g.o. Finsler space which has non-negative flag curvature and satisfies (FP) is a smooth coset space admitting a positively curved homogeneous Riemannian or Finsler metric.


2021 ◽  
Vol 281 ◽  
pp. 550-587
Author(s):  
Damião J. Araújo ◽  
Luciano Mari ◽  
Leandro F. Pessoa

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Muhammad Hamid ◽  
Wei Wang

<p style='text-indent:20px;'>In this paper, we prove a symmetric property for the indices for symplectic paths in the enhanced common index jump theorem (cf. Theorem 3.5 in [<xref ref-type="bibr" rid="b6">6</xref>]). As an application of this property, we prove that on every compact Finsler manifold <inline-formula><tex-math id="M1">\begin{document}$ (M, \, F) $\end{document}</tex-math></inline-formula> with reversibility <inline-formula><tex-math id="M2">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and flag curvature <inline-formula><tex-math id="M3">\begin{document}$ K $\end{document}</tex-math></inline-formula> satisfying <inline-formula><tex-math id="M4">\begin{document}$ \left(\frac{\lambda}{\lambda+1}\right)^2&lt;K\le 1 $\end{document}</tex-math></inline-formula>, there exist two elliptic closed geodesics whose linearized Poincaré map has an eigenvalue of the form <inline-formula><tex-math id="M5">\begin{document}$ e^{\sqrt {-1}\theta} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M6">\begin{document}$ \frac{\theta}{\pi}\notin{\bf Q} $\end{document}</tex-math></inline-formula> provided the number of closed geodesics on <inline-formula><tex-math id="M7">\begin{document}$ M $\end{document}</tex-math></inline-formula> is finite.</p>


2020 ◽  
Vol 308 (1) ◽  
pp. 73-101
Author(s):  
Nobuhiro Innami ◽  
Yoe Itokawa ◽  
Toshiki Kondo ◽  
Tetsuya Nagano ◽  
Katsuhiro Shiohama

2020 ◽  
Vol 17 (08) ◽  
pp. 2050126
Author(s):  
Tayebeh Tabatabaeifar ◽  
Behzad Najafi ◽  
Mehdi Rafie-Rad

We introduce almost contact and cosymplectic Finsler manifolds. Then, we characterize almost contact Randers metrics. It is proved that a cosymplectic Finsler manifold of constant flag curvature must have vanishing flag curvature. We prove that every cosymplectic Finsler manifold is a Landsberg space, under a mild condition. Finally, we show that a cosymplectic Finsler manifold is a Douglas space if and only if it is a Berwald space.


Sign in / Sign up

Export Citation Format

Share Document