scholarly journals A fully nonlinear locally constrained anisotropic curvature flow

2022 ◽  
Vol 217 ◽  
pp. 112760
Author(s):  
Yong Wei ◽  
Changwei Xiong
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Boya Li ◽  
Hongjie Ju ◽  
Yannan Liu

<p style='text-indent:20px;'>In this paper, a generalitzation of the <inline-formula><tex-math id="M2">\begin{document}$ L_{p} $\end{document}</tex-math></inline-formula>-Christoffel-Minkowski problem is studied. We consider an anisotropic curvature flow and derive the long-time existence of the flow. Then under some initial data, we obtain the existence of smooth solutions to this problem for <inline-formula><tex-math id="M3">\begin{document}$ c = 1 $\end{document}</tex-math></inline-formula>.</p>


2014 ◽  
Vol 22 (2) ◽  
pp. 325-343 ◽  
Author(s):  
James A. McCoy ◽  
Fatemah Y. Y. Mofarreh ◽  
Valentina-Mira Wheeler

2017 ◽  
Vol 16 (3) ◽  
pp. 945-952 ◽  
Author(s):  
Yannan Liu ◽  
◽  
Hongjie Ju ◽  

2013 ◽  
Vol 193 (5) ◽  
pp. 1443-1455 ◽  
Author(s):  
James A. McCoy ◽  
Fatemah Y. Y. Mofarreh ◽  
Graham H. Williams

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
HongJie Ju ◽  
BoYa Li ◽  
YanNan Liu

AbstractIn this paper, we consider a fully nonlinear curvature flow of a convex hypersurface in the Euclidean 𝑛-space. This flow involves 𝑘-th elementary symmetric function for principal curvature radii and a function of support function. Under some appropriate assumptions, we prove the long-time existence and convergence of this flow. As an application, we give the existence of smooth solutions to the Orlicz–Christoffel–Minkowski problem.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lixia Yuan ◽  
Wei Zhao

<p style='text-indent:20px;'>This paper is devoted to an anisotropic curvature flow of the form <inline-formula><tex-math id="M1">\begin{document}$ V = A(\mathbf{n})H + B(\mathbf{n}) $\end{document}</tex-math></inline-formula> in a band domain <inline-formula><tex-math id="M2">\begin{document}$ \Omega : = [-1,1]\times {\mathbb{R}} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \mathbf{n} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ V $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ H $\end{document}</tex-math></inline-formula> denote respectively the unit normal vector, normal velocity and curvature of a graphic curve <inline-formula><tex-math id="M6">\begin{document}$ \Gamma_t $\end{document}</tex-math></inline-formula>. We require that the curve <inline-formula><tex-math id="M7">\begin{document}$ \Gamma_t $\end{document}</tex-math></inline-formula> contacts <inline-formula><tex-math id="M8">\begin{document}$ \partial \Omega $\end{document}</tex-math></inline-formula> with slopes equaling to the heights of the contact points (which corresponds to a kind of Robin boundary conditions). In spite of the unboundedness of the boundary slopes, we are able to obtain the <i>uniform interior gradient estimates</i> for the solutions by using the zero number argument. Furthermore, when <inline-formula><tex-math id="M9">\begin{document}$ t\to \infty $\end{document}</tex-math></inline-formula>, we show that <inline-formula><tex-math id="M10">\begin{document}$ \Gamma_t $\end{document}</tex-math></inline-formula> converges to a traveling wave with cup-shaped profile and <i>infinite</i> boundary slopes in the <inline-formula><tex-math id="M11">\begin{document}$ C^{2,1}_{\rm{loc}} ((-1,1)\times {\mathbb{R}}) $\end{document}</tex-math></inline-formula>-topology.</p>


Sign in / Sign up

Export Citation Format

Share Document