Natural image statistics based 3D reduced reference image quality assessment in contourlet domain

2015 ◽  
Vol 151 ◽  
pp. 683-691 ◽  
Author(s):  
Xu Wang ◽  
Qiong Liu ◽  
Ran Wang ◽  
Zhuo Chen
2014 ◽  
Vol 543-547 ◽  
pp. 2496-2499
Author(s):  
Abdalmajeed Saifeldeen ◽  
Shu Hong Jiao ◽  
Wei Liu

Prior knowledge about anticipated distortions and their corresponding human opinion scores is needed in the most general purpose no-reference image quality assessment algorithms. When creating the model, all distortion types may not be existed. Predicting the quality of distorted images in practical no-reference image quality assessment algorithms is devised without prior knowledge about images or their distortions. In this study, a blind/no-reference opinion and distortion unaware image quality assessment algorithm based on natural scenes is developed. The proposed approach uses a set of novel features to measure image quality in a spatial domain. The extracted features which are from the scenes gist are formed using Weibull distribution statistics. When testing the proposed algorithm on LIVE database, experiments show that it correlates well with subjective opinion scores. They also show that the proposed algorithm significantly outperforms the popular full-reference peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) methods. Not only do the results reasonably well compete with the recently developed natural image quality evaluator (NIQE) model, but also outperform it.


2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.


Sign in / Sign up

Export Citation Format

Share Document