image feature
Recently Published Documents


TOTAL DOCUMENTS

1718
(FIVE YEARS 632)

H-INDEX

43
(FIVE YEARS 9)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 680
Author(s):  
Sehyeon Kim ◽  
Dae Youp Shin ◽  
Taekyung Kim ◽  
Sangsook Lee ◽  
Jung Keun Hyun ◽  
...  

Motion classification can be performed using biometric signals recorded by electroencephalography (EEG) or electromyography (EMG) with noninvasive surface electrodes for the control of prosthetic arms. However, current single-modal EEG and EMG based motion classification techniques are limited owing to the complexity and noise of EEG signals, and the electrode placement bias, and low-resolution of EMG signals. We herein propose a novel system of two-dimensional (2D) input image feature multimodal fusion based on an EEG/EMG-signal transfer learning (TL) paradigm for detection of hand movements in transforearm amputees. A feature extraction method in the frequency domain of the EEG and EMG signals was adopted to establish a 2D image. The input images were used for training on a model based on the convolutional neural network algorithm and TL, which requires 2D images as input data. For the purpose of data acquisition, five transforearm amputees and nine healthy controls were recruited. Compared with the conventional single-modal EEG signal trained models, the proposed multimodal fusion method significantly improved classification accuracy in both the control and patient groups. When the two signals were combined and used in the pretrained model for EEG TL, the classification accuracy increased by 4.18–4.35% in the control group, and by 2.51–3.00% in the patient group.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yajun Pang

Panorama can reflect the image seen at any angle of view at a certain point of view. How to improve the quality of panorama stitching and use it as a data foundation in the “smart tourism” system has become a research hotspot in recent years. Image stitching means to use the overlapping area between the images to be stitched for registration and fusion to generate a new image with a wider viewing angle. This article takes the production of “Tai Chi” animation as an example to apply image stitching technology to the production of realistic 3D model textures to simplify the production of animation textures. A handheld camera is used to collect images in a certain overlapping area. After cylindrical projection, the Harris algorithm based on scale space is adopted to detect image feature points, the two-way normalized cross-correlation algorithm matches the feature points, and the algorithm to extract the threshold T iteratively removes mismatches. The transformation parameter model is quickly estimated through the improved RANSAC algorithm, and the spliced image is projected and transformed. The Szeliski grayscale fusion method directly calculates the grayscale average of the matching points to fuse the image, and finally, the best stitching method is used to eliminate the ghosting at the image mosaic. Data experiments based on Matlab show that the proposed image splicing technology has the advantages of high efficiency and clear spliced images and a more satisfactory panoramic image visual effect can be achieved.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Ruan Hui

In this paper, a high-level semantic recognition model is used to parse the video content of human sports under engineering management, and the stream shape of the previous layer is embedded in the convolutional operation of the next layer, so that each layer of the convolutional neural network can effectively maintain the stream structure of the previous layer, thus obtaining a video image feature representation that can reflect the image nearest neighbor relationship and association features. The method is applied to image classification, and the experimental results show that the method can extract image features more effectively, thus improving the accuracy of feature classification. Since fine-grained actions usually share a very high similarity in phenotypes and motion patterns, with only minor differences in local regions, inspired by the human visual system, this paper proposes integrating visual attention mechanisms into the fine-grained action feature extraction process to extract features for cues. Taking the problem as the guide, we formulate the athlete’s tacit knowledge management strategy and select the distinctive freestyle aerial skills national team as the object of empirical analysis, compose a more scientific and organization-specific tacit knowledge management program, exert influence on the members in the implementation, and revise to form a tacit knowledge management implementation program with certain promotion value. Group behavior can be identified by analyzing the behavior of individuals and the interaction information between individuals. Individual interactions in a group can be represented by individual representations, and the relationship between individual behaviors can be analyzed by modeling the relationship between individual representations. The performance improvement of the method on mismatched datasets is comparable between the long-short time network based on temporal information and the language recognition method with high-level semantic embedding vectors, with the two methods improving about 12.6% and 23.0%, respectively, compared with the method using the original model and with the i-vector baseline system based on the support vector machine classification method with radial basis functions, with performance improvements about 10.10% and 10.88%, respectively.


2022 ◽  
Vol 12 (2) ◽  
pp. 650
Author(s):  
Meng-Hui Wang ◽  
Shiue-Der Lu ◽  
Chun-Chun Hung

Surge arresters primarily restrain lightning and switch surges in the power system to avoid damaging power equipment. When a surge arrester fails, it leads to huge damage to the power equipment. Therefore, this study proposed the application of a convolutional neural network (CNN) combined with a symmetrized dot pattern (SDP) to detect the state of the surge arrester. First, four typical fault types were constructed for the 18 kV surge arrester, including its normal state, aging of the internal valve, internal humidity, and salt damage to the insulation. Then, the partial discharge signal was measured and extracted using a high-speed data acquisition (DAQ) card, while a snowflake map was established by SDP for the features of each fault type. Finally, CNN was used to detect the status of the surge arrester. This study also used a histogram of oriented gradient (HOG) with support vendor machine (SVM), backpropagation neural network (BPNN), and k-nearest neighbors (KNN) for image feature extraction and identification. The result shows that the proposed method had the highest accuracy at 97.9%, followed by 95% for HOG + SVM, 94.6% for HOG + BPNN, and 91.2% for HOG + KNN. Therefore, the proposed method can effectively detect the fault status of surge arresters.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Li Xu ◽  
Ling Bai ◽  
Lei Li

Considering the problems of poor effect, long reconstruction time, large mean square error (MSE), low signal-to-noise ratio (SNR), and structural similarity index (SSIM) of traditional methods in three-dimensional (3D) image virtual reconstruction, the effect of 3D image virtual reconstruction based on visual communication is proposed. Using the distribution set of 3D image visual communication feature points, the feature point components of 3D image virtual reconstruction are obtained. By iterating the 3D image visual communication information, the features of 3D image virtual reconstruction in visual communication are decomposed, and the 3D image visual communication model is constructed. Based on the calculation of the difference of 3D image texture feature points, the spatial position relationship of 3D image feature points after virtual reconstruction is calculated to complete the texture mapping of 3D image. The deep texture feature points of 3D image are extracted. According to the description coefficient of 3D image virtual reconstruction in visual communication, the virtual reconstruction results of 3D image are constrained. The virtual reconstruction algorithm of 3D image is designed to realize the virtual reconstruction of 3D image. The results show that when the number of samples is 200, the virtual reconstruction time of this paper method is 2.1 s, and the system running time is 5 s; the SNR of the virtual reconstruction is 35.5 db. The MSE of 3D image virtual reconstruction is 3%, and the SSIM of virtual reconstruction is 1.38%, which shows that this paper method can effectively improve the ability of 3D image virtual reconstruction.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xi Guan ◽  
Guang Yang ◽  
Jianming Ye ◽  
Weiji Yang ◽  
Xiaomei Xu ◽  
...  

Abstract Background Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent, which seriously endangers human health. The main method of acquiring brain tumors in the clinic is MRI. Segmentation of brain tumor regions from multi-modal MRI scan images is helpful for treatment inspection, post-diagnosis monitoring, and effect evaluation of patients. However, the common operation in clinical brain tumor segmentation is still manual segmentation, lead to its time-consuming and large performance difference between different operators, a consistent and accurate automatic segmentation method is urgently needed. With the continuous development of deep learning, researchers have designed many automatic segmentation algorithms; however, there are still some problems: (1) The research of segmentation algorithm mostly stays on the 2D plane, this will reduce the accuracy of 3D image feature extraction to a certain extent. (2) MRI images have gray-scale offset fields that make it difficult to divide the contours accurately. Methods To meet the above challenges, we propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet. In our study, the Squeeze and Excite (SE) module is added to each encoder, the Attention Guide Filter (AG) module is added to each decoder, using the channel relationship to automatically enhance the useful information in the channel to suppress the useless information, and use the attention mechanism to guide the edge information and remove the influence of irrelevant information such as noise. Results We used the BraTS2020 challenge online verification tool to evaluate our approach. The focus of verification is that the Dice scores of the whole tumor, tumor core and enhanced tumor are 0.68, 0.85 and 0.70, respectively. Conclusion Although MRI images have different intensities, AGSE-VNet is not affected by the size of the tumor, and can more accurately extract the features of the three regions, it has achieved impressive results and made outstanding contributions to the clinical diagnosis and treatment of brain tumor patients.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Chuanbao Niu ◽  
Mingzhu Zhang

This paper presents an in-depth study and analysis of the image feature extraction technique for ancient ceramic identification using an algorithm of partial differential equations. Image features of ancient ceramics are closely related to specific raw material selection and process technology, and complete acquisition of image features of ancient ceramics is a prerequisite for achieving image feature identification of ancient ceramics, since the quality of extracted area-grown ancient ceramic image feature extraction method is closely related to the background pixels and does not have generalizability. In this paper, we propose a deep learning-based extraction method, using Eased as a deep learning support platform, to extract and validate 5834 images of 272 types of ancient ceramics from kilns, celadon, and Yue kilns after manual labelling and training learning, and the results show that the average complete extraction rate is higher than 99%. The implementation of the deep learning method is summarized and compared with the traditional region growth extraction method, and the results show that the method is robust with the increase of the learning amount and has generalizability, which is a new method to effectively achieve the complete image feature extraction of ancient ceramics. The main content of the finite difference method is to use the ratio of the difference between the function values of two adjacent points and the distance between the two points to approximate the partial derivative of the function with respect to the variable. This idea was used to turn the problem of division into a problem of difference. Recognition of ancient ceramic image features was realized based on the extraction of the overall image features of ancient ceramics, the extraction and recognition of vessel type features, the quantitative recognition of multidimensional feature fusion ornamentation image features, and the implementation of deep learning based on inscription model recognition image feature classification recognition method; three-layer B/S architecture web application system and cross-platform system language called as the architectural support; and database services, deep learning packaging, and digital image processing. The specific implementation method is based on database service, deep learning encapsulation, digital image processing, and third-party invocation, and the service layer fusion and relearning mechanism is proposed to achieve the preliminary intelligent recognition system of ancient ceramic vessel type and ornament image features. The results of the validation test meet the expectation and verify the effectiveness of the ancient ceramic vessel type and ornament image feature recognition system.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chan Yin ◽  
Lili Tong ◽  
Dan Nie ◽  
Zhihui Fei ◽  
Xiaoqun Tan ◽  
...  

Abstract Background The prenatal diagnosis of foetal imperforate anus is difficult. Most previous studies have been case reports. To provide useful information for diagnosing foetal imperforate anus, a retrospective review of diagnostic approaches was conducted. Ultrasonography was performed in 19 cases of foetal imperforate anus from 2016 to 2019 at our prenatal diagnostic centre. The prenatal sonographic features and outcomes of each case were collected and evaluated. Result The anal sphincter of a normal foetus shows the ‘target sign’ on cross-sectional observation. Of the 19 cases of imperforate anus, 16 cases were diagnosed by the ultrasound image feature called the ‘line sign’. 1 case with tail degeneration was low type imperforate anus with the irregular ‘target sign’ not a real ‘target sign’. There was two false-negative case, in which the ‘target sign’ was found, but irregular. Conclusion In this study, we find that the anus of a foetus with imperforate anus presents a ‘line sign’ on sonographic observation. The absence of the ‘target sign’ and then the presence of the ‘line sign’ can assist in the diagnosis of imperforate anus. The ‘line sign’ can be used as a secondary assessment to determine the type of the malformation following non visualization of the ‘target sign’. The higher the position of the imperforate anus is, the more obvious the ‘line sign’. It is worth noting that the finding of the short ‘line sign’ and irregularr ‘target sign’ can not ignore the low type imperforate anus.


Sign in / Sign up

Export Citation Format

Share Document