Exploiting hierarchical visual features for visual question answering

2019 ◽  
Vol 351 ◽  
pp. 187-195 ◽  
Author(s):  
Jongkwang Hong ◽  
Jianlong Fu ◽  
Youngjung Uh ◽  
Tao Mei ◽  
Hyeran Byun
Author(s):  
Yiyi Zhou ◽  
Rongrong Ji ◽  
Jinsong Su ◽  
Xiaoshuai Sun ◽  
Weiqiu Chen

In visual question answering (VQA), recent advances have well advocated the use of attention mechanism to precisely link the question to the potential answer areas. As the difficulty of the question increases, more VQA models adopt multiple attention layers to capture the deeper visual-linguistic correlation. But a negative consequence is the explosion of parameters, which makes the model vulnerable to over-fitting, especially when limited training examples are given. In this paper, we propose an extremely compact alternative to this static multi-layer architecture towards accurate yet efficient attention modeling, termed as Dynamic Capsule Attention (CapsAtt). Inspired by the recent work of Capsule Network, CapsAtt treats visual features as capsules and obtains the attention output via dynamic routing, which updates the attention weights by calculating coupling coefficients between the underlying and output capsules. Meanwhile, CapsAtt also discards redundant projection matrices to make the model much more compact. We quantify CapsAtt on three benchmark VQA datasets, i.e., COCO-QA, VQA1.0 and VQA2.0. Compared to the traditional multi-layer attention model, CapsAtt achieves significant improvements of up to 4.1%, 5.2% and 2.2% on three datasets, respectively. Moreover, with much fewer parameters, our approach also yields competitive results compared to the latest VQA models. To further verify the generalization ability of CapsAtt, we also deploy it on another challenging multi-modal task of image captioning, where state-of-the-art performance is achieved with a simple network structure.


Author(s):  
Haiyan Li ◽  
Dezhi Han

Visual Question Answering (VQA) is a multimodal research related to Computer Vision (CV) and Natural Language Processing (NLP). How to better obtain useful information from images and questions and give an accurate answer to the question is the core of the VQA task. This paper presents a VQA model based on multimodal encoders and decoders with gate attention (MEDGA). Each encoder and decoder block in the MEDGA applies not only self-attention and crossmodal attention but also gate attention, so that the new model can better focus on inter-modal and intra-modal interactions simultaneously within visual and language modality. Besides, MEDGA further filters out noise information irrelevant to the results via gate attention and finally outputs attention results that are closely related to visual features and language features, which makes the answer prediction result more accurate. Experimental evaluations on the VQA 2.0 dataset and the ablation experiments under different conditions prove the effectiveness of MEDGA. In addition, the MEDGA accuracy on the test-std dataset has reached 70.11%, which exceeds many existing methods.


2021 ◽  
Author(s):  
Dezhi Han ◽  
Shuli Zhou ◽  
Kuan Ching Li ◽  
Rodrigo Fernandes de Mello

Sign in / Sign up

Export Citation Format

Share Document