Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network

2019 ◽  
Vol 369 ◽  
pp. 50-60 ◽  
Author(s):  
Guangfu Chen ◽  
Chen Xu ◽  
Jingyi Wang ◽  
Jianwen Feng ◽  
Jiqiang Feng
2021 ◽  
Vol 19 (2) ◽  
pp. 2147-2178
Author(s):  
Qing Yang ◽  
◽  
Jun Chen ◽  
Najla Al-Nabhan ◽  

<abstract> <p>As a popular data representation technique, Nonnegative matrix factorization (NMF) has been widely applied in edge computing, information retrieval and pattern recognition. Although it can learn parts-based data representations, existing NMF-based algorithms fail to integrate local and global structures of data to steer matrix factorization. Meanwhile, semi-supervised ones ignore the important role of instances from different classes in learning the representation. To solve such an issue, we propose a novel semi-supervised NMF approach via joint graph regularization and constraint propagation for edge computing, called robust constrained nonnegative matrix factorization (RCNMF), which learns robust discriminative representations by leveraging the power of both L2, 1-norm NMF and constraint propagation. Specifically, RCNMF explicitly exploits global and local structures of data to make latent representations of instances involved by the same class closer and those of instances involved by different classes farther. Furthermore, RCNMF introduces the L2, 1-norm cost function for addressing the problems of noise and outliers. Moreover, L2, 1-norm constraints on the factorial matrix are used to ensure the new representation sparse in rows. Finally, we exploit an optimization algorithm to solve the proposed framework. The convergence of such an optimization algorithm has been proven theoretically and empirically. Empirical experiments show that the proposed RCNMF is superior to other state-of-the-art algorithms.</p> </abstract>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Enming Dong ◽  
Jianping Li ◽  
Zheng Xie

Low rank matrices approximations have been used in link prediction for networks, which are usually global optimal methods and lack of using the local information. The block structure is a significant local feature of matrices: entities in the same block have similar values, which implies that links are more likely to be found within dense blocks. We use this insight to give a probabilistic latent variable model for finding missing links by convex nonnegative matrix factorization with block detection. The experiments show that this method gives better prediction accuracy than original method alone. Different from the original low rank matrices approximations methods for link prediction, the sparseness of solutions is in accord with the sparse property for most real complex networks. Scaling to massive size network, we use the block information mapping matrices onto distributed architectures and give a divide-and-conquer prediction method. The experiments show that it gives better results than common neighbors method when the networks have a large number of missing links.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ling-Yun Dai ◽  
Rong Zhu ◽  
Juan Wang

The explosion of multiomics data poses new challenges to existing data mining methods. Joint analysis of multiomics data can make the best of the complementary information that is provided by different types of data. Therefore, they can more accurately explore the biological mechanism of diseases. In this article, two forms of joint nonnegative matrix factorization based on the sparse and graph Laplacian regularization (SG-jNMF) method are proposed. In the method, the graph regularization constraint can preserve the local geometric structure of data. L 2,1 -norm regularization can enhance the sparsity among the rows and remove redundant features in the data. First, SG-jNMF1 projects multiomics data into a common subspace and applies the multiomics fusion characteristic matrix to mine the important information closely related to diseases. Second, multiomics data of the same disease are mapped into the common sample space by SG-jNMF2, and the cluster structures are detected clearly. Experimental results show that SG-jNMF can achieve significant improvement in sample clustering compared with existing joint analysis frameworks. SG-jNMF also effectively integrates multiomics data to identify co-differentially expressed genes (Co-DEGs). SG-jNMF provides an efficient integrative analysis method for mining the biological information hidden in heterogeneous multiomics data.


Sign in / Sign up

Export Citation Format

Share Document