Exponential stability analysis for discrete-time quaternion-valued neural networks with leakage delay and discrete time-varying delays

2021 ◽  
Vol 430 ◽  
pp. 71-81
Author(s):  
Xingxing You ◽  
Songyi Dian ◽  
Rui Guo ◽  
Shengchuan Li
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yajun Li

An innovative stability analysis approach for a class of discrete-time stochastic neural networks (DSNNs) with time-varying delays is developed. By constructing a novel piecewise Lyapunov-Krasovskii functional candidate, a new sum inequality is presented to deal with sum items without ignoring any useful items, the model transformation is no longer needed, and the free weighting matrices are added to reduce the conservatism in the derivation of our results, so the improvement of computational efficiency can be expected. Numerical examples and simulations are also given to show the effectiveness and less conservatism of the proposed criteria.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document