Dual distance adaptive multiview clustering

2021 ◽  
Vol 441 ◽  
pp. 311-322
Author(s):  
Jichao Chen ◽  
Guang-Bin Huang
2011 ◽  
Vol 19 (22) ◽  
pp. 6881-6884 ◽  
Author(s):  
Tadao Takada ◽  
Yumiko Otsuka ◽  
Mitsunobu Nakamura ◽  
Kazushige Yamana

2018 ◽  
Vol 30 (4) ◽  
pp. 1080-1103 ◽  
Author(s):  
Kun Zhan ◽  
Jinhui Shi ◽  
Jing Wang ◽  
Haibo Wang ◽  
Yuange Xie

Most existing multiview clustering methods require that graph matrices in different views are computed beforehand and that each graph is obtained independently. However, this requirement ignores the correlation between multiple views. In this letter, we tackle the problem of multiview clustering by jointly optimizing the graph matrix to make full use of the data correlation between views. With the interview correlation, a concept factorization–based multiview clustering method is developed for data integration, and the adaptive method correlates the affinity weights of all views. This method differs from nonnegative matrix factorization–based clustering methods in that it can be applicable to data sets containing negative values. Experiments are conducted to demonstrate the effectiveness of the proposed method in comparison with state-of-the-art approaches in terms of accuracy, normalized mutual information, and purity.


2021 ◽  
Vol 27 (7) ◽  
pp. 667-692
Author(s):  
Lamia Berkani ◽  
Lylia Betit ◽  
Louiza Belarif

Clustering-based approaches have been demonstrated to be efficient and scalable to large-scale data sets. However, clustering-based recommender systems suffer from relatively low accuracy and coverage. To address these issues, we propose in this article an optimized multiview clustering approach for the recommendation of items in social networks. First, the selection of the initial medoids is optimized using the Bees Swarm optimization algorithm (BSO) in order to generate better partitions (i.e. refining the quality of medoids according to the objective function). Then, the multiview clustering (MV) is applied, where users are iteratively clustered from the views of both rating patterns and social information (i.e. friendships and trust). Finally, a framework is proposed for testing the different alternatives, namely: (1) the standard recommendation algorithms; (2) the clustering-based and the optimized clustering-based recommendation algorithms using BSO; and (3) the MV and the optimized MV (BSO-MV) algorithms. Experimental results conducted on two real-world datasets demonstrate the effectiveness of the proposed BSO-MV algorithm in terms of improving accuracy, as it outperforms the existing related approaches and baselines.


2018 ◽  
Vol 12 (4) ◽  
pp. 1-30 ◽  
Author(s):  
Sriparna Saha ◽  
Sayantan Mitra ◽  
Stefan Kramer

Sign in / Sign up

Export Citation Format

Share Document