covering radius
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The length function <inline-formula><tex-math id="M3">\begin{document}$ \ell_q(r,R) $\end{document}</tex-math></inline-formula> is the smallest length of a <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary linear code with codimension (redundancy) <inline-formula><tex-math id="M5">\begin{document}$ r $\end{document}</tex-math></inline-formula> and covering radius <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula>. In this work, new upper bounds on <inline-formula><tex-math id="M7">\begin{document}$ \ell_q(tR+1,R) $\end{document}</tex-math></inline-formula> are obtained in the following forms:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &amp;(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} &amp;(b)\; \ell_q(r,R)&lt; 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In the literature, for <inline-formula><tex-math id="M8">\begin{document}$ q = (q')^R $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ q' $\end{document}</tex-math></inline-formula> a prime power, smaller upper bounds are known; however, when <inline-formula><tex-math id="M10">\begin{document}$ q $\end{document}</tex-math></inline-formula> is an arbitrary prime power, the bounds of this paper are better than the known ones.</p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M11">\begin{document}$ t = 1 $\end{document}</tex-math></inline-formula>, we use a one-to-one correspondence between <inline-formula><tex-math id="M12">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes and <inline-formula><tex-math id="M13">\begin{document}$ (R-1) $\end{document}</tex-math></inline-formula>-saturating <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>-sets in the projective space <inline-formula><tex-math id="M15">\begin{document}$ \mathrm{PG}(R,q) $\end{document}</tex-math></inline-formula>. A new construction of such saturating sets providing sets of small size is proposed. Then the <inline-formula><tex-math id="M16">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "<inline-formula><tex-math id="M17">\begin{document}$ q^m $\end{document}</tex-math></inline-formula>-concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension <inline-formula><tex-math id="M18">\begin{document}$ r = tR+1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}$ t\ge1 $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Silvia Boumova ◽  
Peter Boyvalenkov ◽  
Maya Stoyanova

We propose two methods for obtaining estimations on the minimum distance and covering radius of orthogonal arrays. Both methods are based on knowledge about the (feasible) sets of distance distributions of orthogonal arrays with given length, cardinality, factors and strength. New bounds are presented either in analytic form and as products of an ongoing project for computation and investigation of the possible distance distributions of orthogonal arrays with parameters in doable ranges.


Author(s):  
Giulia Codenotti ◽  
Francisco Santos ◽  
Matthias Schymura

AbstractWe explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the “standard terminal simplices” and direct sums of them. We prove this conjecture up to dimension three and show it to be equivalent to the conjecture of González-Merino and Schymura (Discrete Comput. Geom. 58(3), 663–685 (2017)) that the d-th covering minimum of the standard terminal n-simplex equals d/2, for every $$n\ge d$$ n ≥ d . We also show that these two conjectures would follow from a discrete analog for lattice simplices of Hadwiger’s formula bounding the covering radius of a convex body in terms of the ratio of surface area versus volume. To this end, we introduce a new notion of discrete surface area of non-hollow simplices. We prove our discrete analog in dimension two and give strong evidence for its validity in arbitrary dimension.


Author(s):  
Randall Dougherty ◽  
R. Daniel Mauldin ◽  
Mark Tiefenbruck
Keyword(s):  

2021 ◽  
Vol 25 (1) ◽  
pp. 23-27
Author(s):  
Juan Li ◽  
Jian Gao ◽  
Fang-Wei Fu
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The weight distribution of the cosets of maximum distance separable (MDS) codes is considered. In 1990, P.G. Bonneau proposed a relation to obtain the full weight distribution of a coset of an MDS code with minimum distance <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula> using the known numbers of vectors of weights <inline-formula><tex-math id="M2">\begin{document}$ \le d-2 $\end{document}</tex-math></inline-formula> in this coset. In this paper, the Bonneau formula is transformed into a more structured and convenient form. The new version of the formula allows to consider effectively cosets of distinct weights <inline-formula><tex-math id="M3">\begin{document}$ W $\end{document}</tex-math></inline-formula>. (The weight <inline-formula><tex-math id="M4">\begin{document}$ W $\end{document}</tex-math></inline-formula> of a coset is the smallest Hamming weight of any vector in the coset.) For each of the considered <inline-formula><tex-math id="M5">\begin{document}$ W $\end{document}</tex-math></inline-formula> or regions of <inline-formula><tex-math id="M6">\begin{document}$ W $\end{document}</tex-math></inline-formula>, special relations more simple than the general ones are obtained. For the MDS code cosets of weight <inline-formula><tex-math id="M7">\begin{document}$ W = 1 $\end{document}</tex-math></inline-formula> and weight <inline-formula><tex-math id="M8">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula> we obtain formulas of the weight distributions depending only on the code parameters. This proves that all the cosets of weight <inline-formula><tex-math id="M9">\begin{document}$ W = 1 $\end{document}</tex-math></inline-formula> (as well as <inline-formula><tex-math id="M10">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula>) have the same weight distribution. The cosets of weight <inline-formula><tex-math id="M11">\begin{document}$ W = 2 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M12">\begin{document}$ W = d-2 $\end{document}</tex-math></inline-formula> may have different weight distributions; in this case, we proved that the distributions are symmetrical in some sense. The weight distributions of the cosets of MDS codes corresponding to arcs in the projective plane <inline-formula><tex-math id="M13">\begin{document}$ \mathrm{PG}(2,q) $\end{document}</tex-math></inline-formula> are also considered. For MDS codes of covering radius <inline-formula><tex-math id="M14">\begin{document}$ R = d-1 $\end{document}</tex-math></inline-formula> we obtain the number of the weight <inline-formula><tex-math id="M15">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula> cosets and their weight distribution that gives rise to a certain classification of the so-called deep holes. We show that any MDS code of covering radius <inline-formula><tex-math id="M16">\begin{document}$ R = d-1 $\end{document}</tex-math></inline-formula> is an almost perfect multiple covering of the farthest-off points (deep holes); moreover, it corresponds to an optimal multiple saturating set in the projective space <inline-formula><tex-math id="M17">\begin{document}$ \mathrm{PG}(N,q) $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document