Adversarial Point Cloud Perturbations against 3D Object Detection in Autonomous Driving Systems

2021 ◽  
Author(s):  
Xupeng Wang ◽  
Mumuxin Cai ◽  
Ferdous Sohel ◽  
Nan Sang ◽  
Zhengwei Chang
2021 ◽  
Author(s):  
Sambit Mohapatra ◽  
Senthil Yogamani ◽  
Heinrich Gotzig ◽  
Stefan Milz ◽  
Patrick Mader

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


2021 ◽  
Author(s):  
Xinrui Yan ◽  
Yuhao Huang ◽  
Shitao Chen ◽  
Zhixiong Nan ◽  
Jingmin Xin ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4093 ◽  
Author(s):  
Jun Xu ◽  
Yanxin Ma ◽  
Songhua He ◽  
Jiahua Zhu

Three-dimensional (3D) object detection is an important research in 3D computer vision with significant applications in many fields, such as automatic driving, robotics, and human–computer interaction. However, the low precision is an urgent problem in the field of 3D object detection. To solve it, we present a framework for 3D object detection in point cloud. To be specific, a designed Backbone Network is used to make fusion of low-level features and high-level features, which makes full use of various information advantages. Moreover, the two-dimensional (2D) Generalized Intersection over Union is extended to 3D use as part of the loss function in our framework. Empirical experiments of Car, Cyclist, and Pedestrian detection have been conducted respectively on the KITTI benchmark. Experimental results with average precision (AP) have shown the effectiveness of the proposed network.


Author(s):  
Xiaozhi Chen ◽  
Kaustav Kundu ◽  
Ziyu Zhang ◽  
Huimin Ma ◽  
Sanja Fidler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document