tracking accuracy
Recently Published Documents


TOTAL DOCUMENTS

989
(FIVE YEARS 397)

H-INDEX

28
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Jonathan M Matthews ◽  
Brooke Schuster ◽  
Sara Saheb Kashaf ◽  
Ping Liu ◽  
Mustafa Bilgic ◽  
...  

Organoids are three-dimensional in vitro tissue models that closely represent the native heterogeneity, microanatomy, and functionality of an organ or diseased tissue. Analysis of organoid morphology, growth, and drug response is challenging due to the diversity in shape and size of organoids, movement through focal planes, and limited options for live-cell staining. Here, we present OrganoID, an open-source image analysis platform that automatically recognizes, labels, and tracks single organoids in brightfield and phase-contrast microscopy. The platform identifies organoid morphology pixel by pixel without the need for fluorescence or transgenic labeling and accurately analyzes a wide range of organoid types in time-lapse microscopy experiments. OrganoID uses a modified u-net neural network with minimal feature depth to encourage model generalization and allow fast execution. The network was trained on images of human pancreatic cancer organoids and was validated on images from pancreatic, lung, colon, and adenoid cystic carcinoma organoids with a mean intersection-over-union of 0.76. OrganoID measurements of organoid count and individual area concurred with manual measurements at 96% and 95% agreement respectively. Tracking accuracy remained above 89% over the duration of a four-day validation experiment. Automated single-organoid morphology analysis of a dose-response experiment identified significantly different organoid circularity after exposure to different concentrations of gemcitabine. The OrganoID platform enables straightforward, detailed, and accurate analysis of organoid images to accelerate the use of organoids as physiologically relevant models in high-throughput research.


Author(s):  
Xuan Yang ◽  
Xiaoe Ruan ◽  
Yan Geng

This paper is concerned with an iterative learning fault-tolerant control strategy for discrete-time nonlinear systems where actuator faults arbitrarily occur. First, the stochastic faults occurring in multiplicative and additive manner are considered. Then, statistical behaviors of both faults-corrupted control signals from the actuator to the plant and faults-free ones from the iterative learning controller to the actuator are analyzed. Meanwhile, sufficient conditions of convergence for the proposed strategy are established by resorting to the time-weighted norm technique. Finally, two numerical examples are provided to illustrate the effectiveness and reliability of the proposed results. Both theoretical analysis and simulations indicate that the developed strategy is satisfactory in preserving decent tracking accuracy of the addressed systems subject to actuator faults.


2022 ◽  
Vol 12 (2) ◽  
pp. 893
Author(s):  
Lan Li ◽  
Yi Jiang ◽  
Xiaowei Yang ◽  
Jianyong Yao

Uncertainties and disturbances widely exist in electrohydraulic lifting mechanisms of launcher systems, which may worsen the rapid-erection tracking accuracy and even make the system unstable. To deal with the issue, an asymptotic tracking control framework is developed for electrohydraulic lifting mechanisms of launcher systems. Firstly, the dynamic equations and state-space forms of the electrohydraulic lifting mechanism are modeled. Based on the system model, a nonlinear rapid-erection robust controller is constructed to achieve the improvement of the system control performance, in which a nonlinear feedback term is employed to remove the effects of uncertainties and disturbances on tracking performance. Compared to the existing results, the asymptotic tracking stability of the closed-loop system can be assured based on the Lyapunov theory analysis. In the end, the simulation example of an actual electrohydraulic lifting mechanism of the launcher system is done to validate the effectiveness with the proposed controller.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 619
Author(s):  
Jinsong Liu ◽  
Isak Worre Foged ◽  
Thomas B. Moeslund

Satisfactory indoor thermal environments can improve working efficiencies of office staff. To build such satisfactory indoor microclimates, individual thermal comfort assessment is important, for which personal clothing insulation rate (Icl) and metabolic rate (M) need to be estimated dynamically. Therefore, this paper proposes a vision-based method. Specifically, a human tracking-by-detection framework is implemented to acquire each person’s clothing status (short-sleeved, long-sleeved), key posture (sitting, standing), and bounding box information simultaneously. The clothing status together with a key body points detector locate the person’s skin region and clothes region, allowing the measurement of skin temperature (Ts) and clothes temperature (Tc), and realizing the calculation of Icl from Ts and Tc. The key posture and the bounding box change across time can category the person’s activity intensity into a corresponding level, from which the M value is estimated. Moreover, we have collected a multi-person thermal dataset to evaluate the method. The tracking-by-detection framework achieves a mAP50 (Mean Average Precision) rate of 89.1% and a MOTA (Multiple Object Tracking Accuracy) rate of 99.5%. The Icl estimation module gets an accuracy of 96.2% in locating skin and clothes. The M estimation module obtains a classification rate of 95.6% in categorizing activity level. All of these prove the usefulness of the proposed method in a multi-person scenario of real-life applications.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Qiang Gao ◽  
Yong Zhu ◽  
Jinhua Liu

A fuel metering valve actuated by two binary-coded digital valve arrays (BDVAs) is proposed to improve the reliability of conventional fuel metering valves piloted by a servo valve. The design concept of this configuration is obtained from the structural characteristics of the dual nozzle-flapper and the flow regulation method of the digital hydraulic technology. The structure and working principle of the fuel metering valve are presented. Then, a mathematical model of the entire valve is developed for dynamic analysis. Subsequently, the mechanism of the transient flow uncertainty of the BDVA is revealed through simulation to determine the fluctuation in the velocity of the fuel metering valve. Furthermore, step response indicates that the delay time of the fuel metering valve is within 4.1 ms. Finally, to improve the position tracking accuracy of the fuel metering valve, a velocity feedforward proportional-integral controller with pulse code modulation is proposed. A series of comparative analyses indicate that compared with those of the velocity feedforward controller, the average and standard deviation of the position error for the proposed controller are reduced by 78 and 72.7%, respectively. The results prove the feasibility of the proposed valve and the effectiveness of the proposed control strategy.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Liang Wang ◽  
Zhiqiang Zhai ◽  
Zhongxiang Zhu ◽  
Enrong Mao

To improve the path tracking accuracy of autonomous tractors in operation, an improved Stanley controller (IMP-ST) is proposed in this paper. The controller was applied to a two-wheel tractor dynamics model. The parameters of the IMP-ST were optimized by multiple-population genetic algorithm (MPGA) to obtain better tracking performance. The main purpose of this paper is to implement path tracking control on an autonomous tractor. Thus, it is significant to study this field because of smart agricultural development. According to the turning strategy of tractors in field operations, five working routes for tractors were designed, including straight, U, Ω, acute-angle and obtuse-angle routes. Simulation tests were conducted to verify the effectiveness of the proposed IMP-ST in tractor path tracking for all routes. The lateral root-mean-square (RMS) error of the IMP-ST was reduced by up to 36.84% and 48.61% compared to the extended Stanley controller and the original Stanley controller, respectively. The simulation results indicate that the IMP-ST performed well in guiding the tractor to follow all planned working routes. In particular, for the U and Ω routes, the two most common turning methods in tractor field operations, the path tracking performance of the IMP-ST was improved by 41.72% and 48.61% compared to the ST, respectively. Comparing and analyzing the e-Ψ and β-γ phase plane of the three controllers, the results indicate that the IMP-ST has the best control stability.


2022 ◽  
Author(s):  
Jianlong Zhang ◽  
Qiao Li ◽  
Bin Wang ◽  
Chen Chen ◽  
Tianhong Wang ◽  
...  

Abstract Siamese network based trackers formulate the visual tracking mission as an image matching process by regression and classification branches, which simplifies the network structure and improves tracking accuracy. However, there remain many problems as described below. 1) The lightweight neural networks decreases feature representation ability. The tracker is easy to fail under the disturbing distractors (e.g., deformation and similar objects) or large changes in viewing angle. 2) The tracker cannot adapt to variations of the object. 3) The tracker cannot reposition the object that has failed to track. To address these issues, we first propose a novel match filter arbiter based on the Euclidean distance histogram between the centers of multiple candidate objects to automatically determine whether the tracker fails. Secondly, Hopcroft-Karp algorithm is introduced to select the winners from the dynamic template set through the backtracking process, and object relocation is achieved by comparing the Gradient Magnitude Similarity Deviation between the template and the winners. The experiments show that our method obtains better performance on several tracking benchmarks, i.e., OTB100, VOT2018, GOT-10k and LaSOT, compared with state-of-the-art methods.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 509
Author(s):  
Dipayan Mitra ◽  
Aranee Balachandran ◽  
Ratnasingham Tharmarasa

Airborne angle-only sensors can be used to track stationary or mobile ground targets. In order to make the problem observable in 3-dimensions (3-D), the height of the target (i.e., the height of the terrain) from the sea-level is needed to be known. In most of the existing works, the terrain height is assumed to be known accurately. However, the terrain height is usually obtained from Digital Terrain Elevation Data (DTED), which has different resolution levels. Ignoring the terrain height uncertainty in a tracking algorithm will lead to a bias in the estimated states. In addition to the terrain uncertainty, another common source of uncertainty in angle-only sensors is the sensor biases. Both these uncertainties must be handled properly to obtain better tracking accuracy. In this paper, we propose algorithms to estimate the sensor biases with the target(s) of opportunity and algorithms to track targets with terrain and sensor bias uncertainties. Sensor bias uncertainties can be reduced by estimating the biases using the measurements from the target(s) of opportunity with known horizontal positions. This step can be an optional step in an angle-only tracking problem. In this work, we have proposed algorithms to pick optimal targets of opportunity to obtain better bias estimation and algorithms to estimate the biases with the selected target(s) of opportunity. Finally, we provide a filtering framework to track the targets with terrain and bias uncertainties. The Posterior Cramer–Rao Lower Bound (PCRLB), which provides the lower bound on achievable estimation error, is derived for the single target filtering with an angle-only sensor with terrain uncertainty and measurement biases. The effectiveness of the proposed algorithms is verified by Monte Carlo simulations. The simulation results show that sensor biases can be estimated accurately using the target(s) of opportunity and the tracking accuracies of the targets can be improved significantly using the proposed algorithms when the terrain and bias uncertainties are present.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Bing Zhang ◽  
Kang Nie ◽  
Xinglong Chen ◽  
Yao Mao

The electro-optical tracking system (ETS) on moving platforms is affected by the vibration of the moving carrier, the wind resistance torque in motion, the uncertainty of mechanisms and the nonlinear friction between frames and other disturbances, which may lead to the instability of the electro-optical tracking platform. Sliding mode control (SMC) has strong robustness to system disturbances and unknown dynamic external signals, which can enhance the disturbance suppression ability of ETSs. However, the strong robustness of SMC requires greater switching gain, which causes serious chattering. At the same time, the tracking accuracy of SMC has room for further improvement. Therefore, in order to solve the chattering problem of SMC and improve the tracking accuracy of SMC, an SMC controller based on internal model control (IMC) is proposed. Compared with traditional SMC, the proposed method can be used to suppress the strongest disturbance with the smallest switching gain, effectively solving the chattering problem of the SMC, while improving the tracking accuracy of the system. In addition, to reduce the adverse influence of sensor noise on the control effect, lifting wavelet threshold de-noising is introduced into the control structure to further improve the tracking accuracy of the system. The simulation and experimental results verify the superiority of the proposed control method.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Chen Zhang ◽  
Wen Qin ◽  
Ming-Can Fan ◽  
Ting Wang ◽  
Mou-Quan Shen

This paper proposes an adaptive formation tracking control algorithm optimized by Q-learning scheme for multiple mobile robots. In order to handle the model uncertainties and external disturbances, a desired linear extended state observer is designed to develop an adaptive formation tracking control strategy. Then an adaptive method of sliding mode control parameters optimized by Q-learning scheme is employed, which can avoid the complex parameter tuning process. Furthermore, the stability of the closed-loop control system is rigorously proved by means of matrix properties of graph theory and Lyapunov theory, and the formation tracking errors can be guaranteed to be uniformly ultimately bounded. Finally, simulations are presented to show the proposed algorithm has the advantages of faster convergence rate, higher tracking accuracy, and better steady-state performance.


Sign in / Sign up

Export Citation Format

Share Document