scholarly journals 3D-GIoU: 3D Generalized Intersection over Union for Object Detection in Point Cloud

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4093 ◽  
Author(s):  
Jun Xu ◽  
Yanxin Ma ◽  
Songhua He ◽  
Jiahua Zhu

Three-dimensional (3D) object detection is an important research in 3D computer vision with significant applications in many fields, such as automatic driving, robotics, and human–computer interaction. However, the low precision is an urgent problem in the field of 3D object detection. To solve it, we present a framework for 3D object detection in point cloud. To be specific, a designed Backbone Network is used to make fusion of low-level features and high-level features, which makes full use of various information advantages. Moreover, the two-dimensional (2D) Generalized Intersection over Union is extended to 3D use as part of the loss function in our framework. Empirical experiments of Car, Cyclist, and Pedestrian detection have been conducted respectively on the KITTI benchmark. Experimental results with average precision (AP) have shown the effectiveness of the proposed network.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wanyi Zhang ◽  
Xiuhua Fu ◽  
Wei Li

3D object detection based on point cloud data in the unmanned driving scene has always been a research hotspot in unmanned driving sensing technology. With the development and maturity of deep neural networks technology, the method of using neural network to detect three-dimensional object target begins to show great advantages. The experimental results show that the mismatch between anchor and training samples would affect the detection accuracy, but it has not been well solved. The contributions of this paper are as follows. For the first time, deformable convolution is introduced into the point cloud object detection network, which enhances the adaptability of the network to vehicles with different directions and shapes. Secondly, a new generation method of anchor in RPN is proposed, which can effectively prevent the mismatching between the anchor and ground truth and remove the angle classification loss in the loss function. Compared with the state-of-the-art method, the AP and AOS of the detection results are improved.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


2021 ◽  
Author(s):  
Xinrui Yan ◽  
Yuhao Huang ◽  
Shitao Chen ◽  
Zhixiong Nan ◽  
Jingmin Xin ◽  
...  

2020 ◽  
Author(s):  
Joanna Stanisz ◽  
Konrad Lis ◽  
Tomasz Kryjak ◽  
Marek Gorgon

In this paper we present our research on the optimisation of a deep neural network for 3D object detection in a point cloud. Techniques like quantisation and pruning available in the Brevitas and PyTorch tools were used. We performed the experiments for the PointPillars network, which offers a reasonable compromise between detection accuracy and calculation complexity. The aim of this work was to propose a variant of the network which we will ultimately implement in an FPGA device. This will allow for real-time LiDAR data processing with low energy consumption. The obtained results indicate that even a significant quantisation from 32-bit floating point to 2-bit integer in the main part of the algorithm, results in 5%-9% decrease of the detection accuracy, while allowing for almost a 16-fold reduction in size of the model.


2021 ◽  
Vol 13 (24) ◽  
pp. 5071
Author(s):  
Jing Zhang ◽  
Jiajun Wang ◽  
Da Xu ◽  
Yunsong Li

The use of LiDAR point clouds for accurate three-dimensional perception is crucial for realizing high-level autonomous driving systems. Upon considering the drawbacks of the current point cloud object-detection algorithms, this paper proposes HCNet, an algorithm that combines an attention mechanism with adaptive adjustment, starting from feature fusion and overcoming the sparse and uneven distribution of point clouds. Inspired by the basic idea of an attention mechanism, a feature-fusion structure HC module with height attention and channel attention, weighted in parallel, is proposed to perform feature-fusion on multiple pseudo images. The use of several weighting mechanisms enhances the ability of feature-information expression. Additionally, we designed an adaptively adjusted detection head that also overcomes the sparsity of the point cloud from the perspective of original information fusion. It reduces the interference caused by the uneven distribution of the point cloud from the perspective of adaptive adjustment. The results show that our HCNet has better accuracy than other one-stage-network or even two-stage-network RCNNs under some evaluation detection metrics. Additionally, it has a detection rate of 30FPS. Especially for hard samples, the algorithm in this paper has better detection performance than many existing algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6043
Author(s):  
Yujun Jiao ◽  
Zhishuai Yin

A two-phase cross-modality fusion detector is proposed in this study for robust and high-precision 3D object detection with RGB images and LiDAR point clouds. First, a two-stream fusion network is built into the framework of Faster RCNN to perform accurate and robust 2D detection. The visible stream takes the RGB images as inputs, while the intensity stream is fed with the intensity maps which are generated by projecting the reflection intensity of point clouds to the front view. A multi-layer feature-level fusion scheme is designed to merge multi-modal features across multiple layers in order to enhance the expressiveness and robustness of the produced features upon which region proposals are generated. Second, a decision-level fusion is implemented by projecting 2D proposals to the space of the point cloud to generate 3D frustums, on the basis of which the second-phase 3D detector is built to accomplish instance segmentation and 3D-box regression on the filtered point cloud. The results on the KITTI benchmark show that features extracted from RGB images and intensity maps complement each other, and our proposed detector achieves state-of-the-art performance on 3D object detection with a substantially lower running time as compared to available competitors.


2020 ◽  
Vol 397 ◽  
pp. 477-485 ◽  
Author(s):  
Yongguang Yang ◽  
Feng Chen ◽  
Fei Wu ◽  
Deliang Zeng ◽  
Yi-mu Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document