scholarly journals Approximation rates for neural networks with general activation functions

2020 ◽  
Vol 128 ◽  
pp. 313-321
Author(s):  
Jonathan W. Siegel ◽  
Jinchao Xu
Author(s):  
Ahmadjan Muhammadhaji ◽  
Abdujelil Abdurahman

AbstractThis paper studies the general decay synchronization (GDS) of a class of fuzzy cellular neural networks (FCNNs) with general activation functions and time-varying delays. By introducing suitable Lyapunov-Krasovskii functionals and employing useful inequality techniques, some novel criteria ensuring the GDS of considered FCNNs are established via a type of nonlinear control. In addition, two examples with numerical simulations are presented to illustrate the obtained theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Guoquan Liu ◽  
Shumin Zhou ◽  
He Huang

The stability analysis of global asymptotic stability of neural networks of neutral type with both discrete interval delays and general activation functions is discussed. New delay-dependent conditions are obtained by using more general Lyapunov-Krasovskii functionals. Meanwhile, these conditions are expressed in terms of a linear matrix inequality (LMI) and can be verified using the MATLAB LMI toolbox. Numerical examples are used to illustrate the effectiveness of the proposed approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaohong Wang ◽  
Huan Qi

This paper is concerned with the robust dissipativity problem for interval recurrent neural networks (IRNNs) with general activation functions, and continuous time-varying delay, and infinity distributed time delay. By employing a new differential inequality, constructing two different kinds of Lyapunov functions, and abandoning the limitation on activation functions being bounded, monotonous and differentiable, several sufficient conditions are established to guarantee the global robust exponential dissipativity for the addressed IRNNs in terms of linear matrix inequalities (LMIs) which can be easily checked by LMI Control Toolbox in MATLAB. Furthermore, the specific estimation of positive invariant and global exponential attractive sets of the addressed system is also derived. Compared with the previous literatures, the results obtained in this paper are shown to improve and extend the earlier global dissipativity conclusions. Finally, two numerical examples are provided to demonstrate the potential effectiveness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document