Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms: A non-separation approach

2022 ◽  
Author(s):  
Changqing Long ◽  
Guodong Zhang ◽  
Zhigang Zeng ◽  
Junhao Hu
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Meng Hui ◽  
Jiahuang Zhang ◽  
Jiao Zhang ◽  
Herbert Ho-Ching Iu ◽  
Rui Yao ◽  
...  

2017 ◽  
Vol 46 (1) ◽  
pp. 271-291 ◽  
Author(s):  
Chao Zhou ◽  
Wanli Zhang ◽  
Xinsong Yang ◽  
Chen Xu ◽  
Jianwen Feng

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Deyi Li ◽  
Yuanyuan Wang ◽  
Guici Chen ◽  
Shasha Zhu

This paper pays close attention to the problem of finite-time stabilization related to stochastic inertial neural networks with or without time-delay. By establishing proper Lyapunov-Krasovskii functional and making use of matrix inequalities, some sufficient conditions on finite-time stabilization are obtained and the stochastic settling-time function is also estimated. Furthermore, in order to achieve the finite-time stabilization, both delayed and nondelayed nonlinear feedback controllers are designed, respectively, in terms of solutions to a set of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the correction of the theoretical results and the effectiveness of the proposed control design method.


Sign in / Sign up

Export Citation Format

Share Document