time synchronization
Recently Published Documents


TOTAL DOCUMENTS

2857
(FIVE YEARS 837)

H-INDEX

59
(FIVE YEARS 11)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-23
Author(s):  
Junyang Shi ◽  
Xingjian Chen ◽  
Mo Sha

IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-31
Author(s):  
Roman Trüb ◽  
Reto Da Forno ◽  
Lukas Daschinger ◽  
Andreas Biri ◽  
Jan Beutel ◽  
...  

Testbeds for wireless IoT devices facilitate testing and validation of distributed target nodes. A testbed usually provides methods to control, observe, and log the execution of the software. However, most of the methods used for tracing the execution require code instrumentation and change essential properties of the observed system. Methods that are non-intrusive are typically not applicable in a distributed fashion due to a lack of time synchronization or necessary hardware/software support. In this article, we present a tracing system for validating time-critical software running on multiple distributed wireless devices that does not require code instrumentation, is non-intrusive and is designed to trace the distributed state of an entire network. For this purpose, we make use of the on-chip debug and trace hardware that is part of most modern microcontrollers. We introduce a testbed architecture as well as models and methods that accurately synchronize the timestamps of observations collected by distributed observers. In a case study, we demonstrate how the tracing system can be applied to observe the distributed state of a flooding-based low-power communication protocol for wireless sensor networks. The presented non-intrusive tracing system is implemented as a service of the publicly accessible open source FlockLab 2 testbed.


2022 ◽  
Vol 6 (1) ◽  
pp. 36
Author(s):  
Pratap Anbalagan ◽  
Raja Ramachandran ◽  
Jehad Alzabut ◽  
Evren Hincal ◽  
Michal Niezabitowski

This research paper deals with the passivity and synchronization problem of fractional-order memristor-based competitive neural networks (FOMBCNNs) for the first time. Since the FOMBCNNs’ parameters are state-dependent, FOMBCNNs may exhibit unexpected parameter mismatch when different initial conditions are chosen. Therefore, the conventional robust control scheme cannot guarantee the synchronization of FOMBCNNs. Under the framework of the Filippov solution, the drive and response FOMBCNNs are first transformed into systems with interval parameters. Then, the new sufficient criteria are obtained by linear matrix inequalities (LMIs) to ensure the passivity in finite-time criteria for FOMBCNNs with mismatched switching jumps. Further, a feedback control law is designed to ensure the finite-time synchronization of FOMBCNNs. Finally, three numerical cases are given to illustrate the usefulness of our passivity and synchronization results.


2022 ◽  
Author(s):  
Shaohui Yan ◽  
Qiyu Wang ◽  
Ertong Wang ◽  
Xi Sun ◽  
Zhenlong Song

Abstract The definition of fractional calculus is introduced into the 5D chaotic system, and the 5D fractional-order chaotic system is obtained. The new 5D fractional-order chaotic system has no equilibrium, multi-scroll hidden attractor and multi-stability. By analyzing the time-domain waveform, phase diagram, bifurcation diagram and complexity, it is found that the system has no equilibrium but is very sensitive to parameters and initial values. With the variation of different parameters, the system can produce attractors of different scroll types accompanied by bursting oscillation. Secondly, the multi-stability of the hidden attractor is studied. Different initial values lead to the coexistence of attractors of different scroll number, which shows the advantages of the system. The correctness and realizability of the fractional-order chaotic system are proved by analog circuit and physical implement. Finally, because of the high security of multi-scroll attractor and hidden attractor, finite-time synchronization based on the fractional-order chaotic system is studied, which has a good application prospect in the field of secure communication.


Sign in / Sign up

Export Citation Format

Share Document