Functional maps of visual responses with a multiple-electrode array in macaque inferotemporal cortex

2007 ◽  
Vol 58 ◽  
pp. S214
Author(s):  
Manabu Tanifuji ◽  
Naohisa Miyakawa ◽  
David Blake ◽  
Micheal Merzenich
Data in Brief ◽  
2020 ◽  
Vol 33 ◽  
pp. 106561
Author(s):  
Benjamin Metcalfe ◽  
Alan Hunter ◽  
Jonathan Graham-Harper-Cater ◽  
John Taylor

2010 ◽  
Vol 19 ◽  
pp. S87-S88
Author(s):  
D. Lau ◽  
L. Mackenzie ◽  
N. Shipp ◽  
P. Kuklik ◽  
H. Dimitri ◽  
...  

1994 ◽  
Vol 71 (3) ◽  
pp. 856-867 ◽  
Author(s):  
E. Kobatake ◽  
K. Tanaka

1. To infer relative roles of cortical areas at different stages of the ventral visual pathway, we quantitatively examined visual responses of cells in V2, V4, the posterior part of the inferotemporal cortex (posterior IT), and the anterior part of the inferotemporal cortex (anterior IT), using anesthetized macaque monkeys. 2. The critical feature for the activation was first determined for each recorded cell by using a reduction method. We started from images of three-dimensional complex objects and simplified the image of effective stimuli step by step by eliminating a part of the features present in the image. The simplest feature that maximally activated the cell was determined as the critical feature. The response to the critical feature was then compared with responses of the same cell to a routine set of 32 simple stimuli, which included white and black bars of four different orientations and squares or spots of four different colors. 3. Cells that responded maximally to particular complex object features were found in posterior IT and V4 as well as in anterior IT. The cells in posterior IT and V4 were, however, different from the cells in anterior IT in that many of them responded to some extent to some simple features, that the size of the receptive field was small, and that they intermingled in single penetrations with cells that responded maximally to some simple features. The complex critical features in posterior IT and V4 varied; they consisted of complex shapes, combinations of a shape and texture, and combinations of a shape and color. 4. We suggest that local neuronal networks in V4 and posterior IT play an essential role in the formation of selective responses to complex object features.


2005 ◽  
Vol 94 (5) ◽  
pp. 3368-3387 ◽  
Author(s):  
Julianne E. Rollenhagen ◽  
Carl R. Olson

Some neurons in the inferotemporal cortex (IT) of the macaque monkey respond to visual stimuli by firing action potentials in a series of sharply defined bursts at a frequency of about 5 Hz. The aim of the present study was to test the hypothesis that the oscillatory responses of these neurons depend on competitive interactions with other neurons selective for different stimuli. To test this hypothesis, we monitored responses to probe images displayed in the presence of other already visible backdrop images. Two stimuli were used in testing each neuron: a foveal image that, when displayed alone, elicited an excitatory response (the “object”) and a peripheral image that, when displayed alone, elicited little or no activity (the “flanker”). We assessed the results of presenting these images separately and together in monkeys trained to maintain central fixation. Two novel phenomena emerged. First, displaying the object in the presence of the flanker enhanced the strength of the oscillatory component of the response to the object. This effect varied in strength across task contexts and may have depended on the monkey's allocating attention to the flanker. Second, displaying the flanker in the presence of the object gave rise to sometimes strong oscillations in which the initial phase was negative. This was all the more striking because the flanker by itself elicited little or no response. This effect was robust and invariant across task contexts. These results can be accounted for by competition between two neuronal populations, one selective for the object and the other for the flanker, if it is assumed that the visual responses of each population are subject to fatigue.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Momo Fujii ◽  
Genshiro A. Sunagawa ◽  
Mineo Kondo ◽  
Masayo Takahashi ◽  
Michiko Mandai

2011 ◽  
Vol 106 (3) ◽  
pp. 1097-1117 ◽  
Author(s):  
Sidney R. Lehky ◽  
Roozbeh Kiani ◽  
Hossein Esteky ◽  
Keiji Tanaka

We have characterized selectivity and sparseness in anterior inferotemporal cortex, using a large data set. Responses were collected from 674 monkey inferotemporal cells, each stimulated by 806 object photographs. This 806 × 674 matrix was examined in two ways: columnwise, looking at responses of a single neuron to all images (single-neuron selectivity), and rowwise, looking at the responses of all neurons caused by a single image (population sparseness). Selectivity and sparseness were measured as kurtosis of probability distributions. Population sparseness exceeded single-neuron selectivity, with specific values dependent on the size of the data sample. This difference was principally caused by inclusion, within the population, of neurons with a variety of dynamic ranges (standard deviations of responses over all images). Statistics of large responses were examined by quantifying how quickly the upper tail of the probability distribution decreased (tail heaviness). This analysis demonstrated that population responses had heavier tails than single-neuron responses, consistent with the difference between sparseness and selectivity measurements. Population responses with spontaneous activity subtracted had the heaviest tails, following a power law. The very light tails of single-neuron responses indicate that the critical feature for each neuron is simple enough to have a high probability of occurring within a limited stimulus set. Heavy tails of population responses indicate that there are a large number of different critical features to which different neurons are tuned. These results are inconsistent with some structural models of object recognition that posit that objects are decomposed into a small number of standard features.


2020 ◽  
Vol 3 (2) ◽  
pp. 44
Author(s):  
Frank H. Kung ◽  
Ellen Townes-Anderson

Precise creation, maintenance, and monitoring of neuronal circuits would facilitate the investigation of subjects such as neuronal development or synaptic plasticity, or assist in the development of neuronal prosthetics. Here we present a method to precisely control the placement of multiple types of neuronal retinal cells onto a commercially available multiple electrode array (MEA), using custom-built optical tweezers. We prepared the MEAs by coating a portion of the MEA with a non-adhesive substrate (Poly (2-hydroxyethyl methacrylate)), and the electrodes with an adhesive cell growth substrate. We then dissociated the retina of adult tiger salamanders, plated them onto prepared MEAs, and utilized the optical tweezers to create retinal circuitry mimicking in vivo connections. In our hands, the optical tweezers moved ~75% of photoreceptors, bipolar cells, and multipolar cells, an average of ~2000 micrometers, at a speed of ~16 micrometers/second. These retinal circuits were maintained in vitro for seven days. We confirmed electrophysiological activity by stimulating the photoreceptors with the MEA and measuring their response with calcium imaging. In conclusion, we have developed a method of utilizing optical tweezers in conjunction with MEAs that allows for the design and maintenance of custom neural circuits for functional analysis.


Sign in / Sign up

Export Citation Format

Share Document