electrical impedance
Recently Published Documents


TOTAL DOCUMENTS

5745
(FIVE YEARS 1293)

H-INDEX

88
(FIVE YEARS 14)

10.29007/x6vj ◽  
2022 ◽  
Author(s):  
Minh Quan Cao Dinh ◽  
Quoc Tuan Nguyen Diep ◽  
Hoang Nhut Huynh ◽  
Ngoc An Dang Nguyen ◽  
Anh Tu Tran ◽  
...  

Electrical Impedance Tomography (EIT) is known as non-invasive method to detect and classify the abnormal breast tissues. Reimaging conductivity distribution within an area of the subject reveal abnormal tissues inside that area. In this work, we have created a very low-cost system with a simple 16-electrode phantom for doing research purposes. The EIT data were measured and reconstructed with EIDORS software.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 665
Author(s):  
Ivan Kudashov ◽  
Sergey Shchukin ◽  
Mugeb Al-harosh ◽  
Andrew Shcherbachev

A venipuncture is the most common non-invasive medical procedure, and is frequently used with patients; however, a high probability of post-injection complications accompanies intravenous injection. The most common complication is a hematoma, which is associated with puncture of the uppermost and lowermost walls. To simplify and reduce complications of the venipuncture procedure, and as well as automation of this process, a device that can provide information of the needle tip position into patient’s tissues needs to be developed. This paper presents a peripheral vascular puncture control system based on electrical impedance measurements. A special electrode system was designed to achieve the maximum sensitivity for puncture identification using a traditional needle, which is usually used in clinical practice. An experimental study on subjects showed that the electrical impedance signal changed significantly once the standard needle entered the blood vessel. On basis of theoretical and experimental studies, a decision rule of puncture identification based on the analysis of amplitude-time parameters of experimental signals was proposed. The proposed method was tested on 15 test and 9 control samples, with the results showing that 97% accuracy was obtained.


2022 ◽  
Vol 23 (2) ◽  
pp. 872
Author(s):  
Nicolas A. Saffioti ◽  
Natalia Lauri ◽  
Lucia Cané ◽  
Rodolfo Gonzalez-Lebrero ◽  
Karina Alleva ◽  
...  

α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 606
Author(s):  
Mugeb Al-harosh ◽  
Egor Chernikov ◽  
Sergey Shchukin

Knowledge of renal blood circulation is considered as an important physiological value, particularly for fast detection of acute allograft rejection as well as the management of critically ill patients with acute renal failure. The electrical impedance signal obtained from kidney with an appropriate electrode system and optimal electrode system position regarding to the kidney projection on skin surface reflects the nature of renal blood circulation and tone of renal blood vessels. This paper proposes a specific numerical modelling based on prior information from MRI-data. The numerical modelling was conducted for electrical impedance change estimation due to renal blood distribution. The proposed model takes into the account the geometrical and electrophysiological parameters of tissues around the kidney as well as the actual blood distribution within the kidney. The numerical modelling had shown that it is possible to register the electrical impedance signal caused by renal blood circulation with an electrode system commensurate with the size of kidney, which makes it possible to reduce the influence of surrounding tissues and organs. Experimental studies were obtained to prove the numerical modelling and the effectiveness of developed electrode systems based on the obtained simulation results. The obtained electrical impedance signal with the appropriate electrode system shows very good agreement with the renal blood change estimated using Doppler ultrasound. For the measured electrical impedance signal, it is possible to obtain the amplitude-time parameters, which reflect the hemodynamic characteristics of the kidneys and used in diagnostics, which is the subject of further research.


Author(s):  
Benoit Brazey ◽  
Yassine Haddab ◽  
Laure Koebel ◽  
Nabil Zemiti

Abstract The presence of a tumor in the tongue is a pathology that requires surgical intervention from a certain stage. This type of surgery is difficult to perform because of the limited space available around the base of the tongue for the insertion of surgical tools. During the procedure, the surgeon has to stretch and then fix the tongue firmly in order to optimize the available space and prevent tissue movement. As a result, the preoperative images of the inside of the tongue no longer give a reliable indication of the position and shape of the cancerous tissue due to the deformation of the overall tissue in the area. Thus, new images are needed during the operation, but are very difficult to obtain using conventional techniques due to the presence of surgical tools. Electrical Impedance Tomography (EIT) is an imaging technique that maps the resistivity or difference of resistivity of biological tissues from electrical signals. The small size of the electrodes makes it a potentially interesting tool to obtain intraoperative images of the inside of the tongue. In this paper, the possibility of using EIT for this purpose is investigated. A detection method is proposed, including an original configuration of the electrodes, consistent with the anatomical specificities of the tongue. The proposed method is studied in simulation and then a proof of concept is obtained experimentally on a 3D printed test tank filled with saline solution and plant fibres.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 461
Author(s):  
Paula Navarro ◽  
Alberto Olmo ◽  
Mercè Giner ◽  
Marleny Rodríguez-Albelo ◽  
Ángel Rodríguez ◽  
...  

The chemical composition and surface topography of titanium implants are essential to improve implant osseointegration. The present work studies a non-invasive alternative of electrical impedance spectroscopy for the characterization of the macroporosity inherent to the manufacturing process and the effect of the surface treatment with femtosecond laser of titanium discs. Osteoblasts cell culture growths on the titanium surfaces of the laser-treated discs were also studied with this method. The measurements obtained showed that the femtosecond laser treatment of the samples and cell culture produced a significant increase (around 50%) in the absolute value of the electrical impedance module, which could be characterized in a wide range of frequencies (being more relevant at 500 MHz). Results have revealed the potential of this measurement technique, in terms of advantages, in comparison to tiresome and expensive techniques, allowing semi-quantitatively relating impedance measurements to porosity content, as well as detecting the effect of surface modification, generated by laser treatment and cell culture.


Sensor Review ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alex Mason ◽  
Dmytro Romanov ◽  
L. Eduardo Cordova-Lopez ◽  
Steven Ross ◽  
Olga Korostynska

Purpose Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of all or many processes is seen as the way forward, with robots performing various tasks instead of people. Meat cutting is one of these tasks. Smart novel solutions, including smart knives, are required, with the smart knife being able to analyse and predict the meat it cuts. This paper aims to review technologies with the potential to be used as a so-called “smart knife” The criteria for a smart knife are also defined. Design/methodology/approach This paper reviews various technologies that can be used, either alone or in combination, for developing a future smart knife for robotic meat cutting, with possibilities for their integration into automatic meat processing. Optical methods, Near Infra-Red spectroscopy, electrical impedance spectroscopy, force sensing and electromagnetic wave-based sensing approaches are assessed against the defined criteria for a smart knife. Findings Optical methods are well established for meat quality and composition characterisation but lack speed and robustness for real-time use as part of a cutting tool. Combining these methods with artificial intelligence (AI) could improve the performance. Methods, such as electrical impedance measurements and rapid evaporative ionisation mass spectrometry, are invasive and not suitable in meat processing since they damage the meat. One attractive option is using athermal electromagnetic waves, although no commercially developed solutions exist that are readily adaptable to produce a smart knife with proven functionality, robustness or reliability. Originality/value This paper critically reviews and assesses a range of sensing technologies with very specific requirements: to be compatible with robotic assisted cutting in the meat industry. The concept of a smart knife that can benefit from these technologies to provide a real-time “feeling feedback” to the robot is at the centre of the discussion.


2022 ◽  
Vol 4 (4) ◽  
pp. 1-22
Author(s):  
Valentina Candiani ◽  
◽  
Matteo Santacesaria ◽  

<abstract><p>We consider the problem of the detection of brain hemorrhages from three-dimensional (3D) electrical impedance tomography (EIT) measurements. This is a condition requiring urgent treatment for which EIT might provide a portable and quick diagnosis. We employ two neural network architectures - a fully connected and a convolutional one - for the classification of hemorrhagic and ischemic strokes. The networks are trained on a dataset with $ 40\, 000 $ samples of synthetic electrode measurements generated with the complete electrode model on realistic heads with a 3-layer structure. We consider changes in head anatomy and layers, electrode position, measurement noise and conductivity values. We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling (different shapes and volumes), higher levels of noise and different amounts of electrode misplacement. On most test datasets we achieve $ \geq 90\% $ average accuracy with fully connected neural networks, while the convolutional ones display an average accuracy $ \geq 80\% $. Despite the use of simple neural network architectures, the results obtained are very promising and motivate the applications of EIT-based classification methods on real phantoms and ultimately on human patients.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document