scholarly journals Broca's Area and the Hierarchical Organization of Human Behavior

Neuron ◽  
2006 ◽  
Vol 50 (6) ◽  
pp. 963-974 ◽  
Author(s):  
Etienne Koechlin ◽  
Thomas Jubault
1991 ◽  
Vol 14 (4) ◽  
pp. 531-551 ◽  
Author(s):  
Patricia M. Greenfield

AbstractDuring the first two years of human life a common neural substrate (roughly Broca's area) underlies the hierarchical organization of elements in the development of speech as well as the capacity to combine objects manually, including tool use. Subsequent cortical differentiation, beginning at age two, creates distinct, relatively modularized capacities for linguistic grammar and more complex combination of objects. An evolutionary homologue of the neural substrate for language production and manual action is hypothesized to have provided a foundation for the evolution of language before the divergence of the hominids and the great apes. Support comes from the discovery of a Broca's area homologue and related neural circuits in contemporary primates. In addition, chimpanzees have an identical constraint on hierarchical complexity in both tool use and symbol combination. Their performance matches that of the two-year-old child who has not yet developed the neural circuits for complex grammar and complex manual combination of objects.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
M Musso ◽  
A Schneider ◽  
C Büchel ◽  
C Weiller
Keyword(s):  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii212-ii212
Author(s):  
John Andrews ◽  
Nathan Cahn ◽  
Benjamin Speidel ◽  
Valerie Lu ◽  
Mitchel Berger ◽  
...  

Abstract Brodmann’s areas 44/45 of the inferior frontal gyrus (IFG), are the seat of Broca’s area. The Western Aphasia Battery is a commonly used language battery that diagnoses aphasias based on fluency, comprehension, naming and repetition. Broca’s aphasia is defined as low fluency (0-4/10), retained comprehension (4-10/10), and variable deficits in repetition (0-7.9/10) and naming (0-8/10). The purpose of this study was to find anatomic areas associated with Broca’s aphasia. Patients who underwent resective brain surgery in the dominant hemisphere were evaluated with standardized language batteries pre-op, POD 2, and 1-month post-op. The resection cavities were outlined to construct 3D-volumes of interest. These were aligned using an affine transformation to MNI brain space. A voxel-based lesion-symptom mapping (VLSM) algorithm determined areas associated with Broca’s aphasia when incorporated into a resection. Post-op MRIs were reviewed blindly and percent involvement of pars orbitalis, triangularis and opercularis was recorded. 287 patients had pre-op and POD 2 language evaluations and 178 had 1 month post-op language evaluation. 82/287 patients had IFG involvement in resections. Only 5/82 IFG resections led to Broca’s aphasia. 11/16 patients with Broca’s aphasia at POD 2 had no involvement of IFG in resection. 35% of IFG resections were associated with non-specific dysnomia and 36% were normal. By one-month, 76% of patients had normal speech. 80% of patients with Broca’s aphasia at POD 2 improved to normal speech at 1-month, with 20% improved to non-specific dysnomia. The most highly correlated (P< 0.005) anatomic areas with Broca’s aphasia were juxta-sylvian pre- and post-central gyrus extending to supramarginal gyrus. While Broca’s area resections were rarely associated with Broca’s aphasia, juxta-sylvian pre- and post-central gyri extending to the supramarginal gyrus were statistically associated with Broca’s type aphasia when resected. These results have implications for planning resective brain surgery in these presumed eloquent brain areas.


Neuroreport ◽  
2011 ◽  
Vol 22 (18) ◽  
pp. 965-969 ◽  
Author(s):  
Emeline Clerget ◽  
Arnaud Badets ◽  
Julie Duqué ◽  
Etienne Olivier

2004 ◽  
Vol 15 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Michiru Makuuchi
Keyword(s):  

2002 ◽  
Vol 17 ◽  
pp. 220
Author(s):  
S. Dollfus ◽  
G. Josse ◽  
M. Joliot ◽  
F. Crivello ◽  
D. Papathanassiou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document