scholarly journals An Activity-Dependent Retrograde Signal Induces the Expression of the High-Affinity Choline Transporter in Cholinergic Neurons

Neuron ◽  
2009 ◽  
Vol 61 (2) ◽  
pp. 272-286 ◽  
Author(s):  
Arjun Krishnaswamy ◽  
Ellis Cooper
2016 ◽  
Vol 17 (2) ◽  
pp. 97-102
Author(s):  
Mohammad Anwar Ul Azim ◽  
Takashi Kozaka ◽  
Izumi Uno ◽  
Daisuke Miwa ◽  
Yoji Kitamura ◽  
...  

Introduction: In cholinergic neurons, high affinity choline uptake (HACU) by the high affinity choline transporter (HAChT) is a rate-limiting and regulatory step for the synthesis of Acetylcholine (Ach).Thus, HAChT appear to be a relatively specific presynaptic marker for cholinergic neurons in Alzheimer’s disease.Objectives: The principle objective of the study is to check the affinity of tetrahydroaminoacridine (THA) derivatives for HAChT. Another objective of the research work is to clarify whether the hemicholinium-3 (ChT inhibitor) and HACU enhancer molecules share the same binding sites or not.Materials and Methods: The inhibition activities of tacrine, the 2,3-dimethylfuran derivative of tacrine (DMTA) and their corresponding 2-oxo-1-pyrrolidineacetyl derivatives, namely PTAA and MKC-231 were measured by displacement of a typical HAChT antagonist [3H]HC-3 in rat cerebral membrane. The percentage of inhibition against the binding of [3H]HC-3 to HAChT were calculated using GraphPad Prism v4 software.Results: Hemicholinium-3 showed affinity for HAChT (IC50 = 20 nM) in the in vitro binding assay. A very insignificant inhibition activity (IC50 = 1000 nM) of Tacrine was revealed. The newly synthesized tacrine derivatives, DMTA and PTAA did not show any affinity for HAChT. Although MKC-231 was reported to enhance cholinergic activity at synaptic terminals, it did not show any affinity for the HAChT in [3H]HC-3 binding assay.Conclusion: In vitro [3H]HC-3 binding assay revealed no affinity of MKC-231, tacrine and its corresponding2-oxo-1-pyrrolidineacetate derivative towards HAChT. So, it is worthy to develop radiolabeled HC-3 derivatives with high affinity for HAChT, which can diffuse the BBB, to enable the in vivo investigation of HACU system.Bangladesh J. Nuclear Med. 17(2): 97-102, July 2014


2002 ◽  
Vol 307 (3) ◽  
pp. 275-280 ◽  
Author(s):  
Katrin Lips ◽  
Uwe Pfeil ◽  
Rainer Haberberger ◽  
Wolfgang Kummer

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chen Zhao ◽  
Mengjuan Lin ◽  
Yasi Pan ◽  
Baoping Yu

Background. Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1) is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs) and the role of CHT1 in visceral hypersensitivity. Methods. Repetitive water avoidance stress (WAS) was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD) was determined, and the abdominal withdrawal reflex (AWR) and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3), the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results. Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion. Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity.


2005 ◽  
Vol 94 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Fabiola M. Ribeiro ◽  
Stefanie A. G. Black ◽  
Sean P. Cregan ◽  
Vania F. Prado ◽  
Marco A. M. Prado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document