visceral hypersensitivity
Recently Published Documents


TOTAL DOCUMENTS

656
(FIVE YEARS 151)

H-INDEX

45
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ramasatyaveni Geesala ◽  
You-Min Lin ◽  
Ke Zhang ◽  
Xuan-Zheng Shi

Mechano-transcription is a process whereby mechanical stress alters gene expression. The gastrointestinal (GI) tract is composed of a series of hollow organs, often encountered by transient or persistent mechanical stress. Recent studies have revealed that persistent mechanical stress is present in obstructive, functional, and inflammatory disorders and alters gene transcription in these conditions. Mechano-transcription of inflammatory molecules, pain mediators, pro-fibrotic and growth factors has been shown to play a key role in the development of motility dysfunction, visceral hypersensitivity, inflammation, and fibrosis in the gut. In particular, mechanical stress-induced cyclooxygenase-2 (COX-2) and certain pro-inflammatory mediators in gut smooth muscle cells are responsible for motility dysfunction and inflammatory process. Mechano-transcription of pain mediators such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) may lead to visceral hypersensitivity. Emerging evidence suggests that mechanical stress in the gut also leads to up-regulation of certain proliferative and pro-fibrotic mediators such as connective tissue growth factor (CTGF) and osteopontin (OPN), which may contribute to fibrostenotic Crohn’s disease. In this review, we will discuss the pathophysiological significance of mechanical stress-induced expression of pro-inflammatory molecules, pain mediators, pro-fibrotic and growth factors in obstructive, inflammatory, and functional bowel disorders. We will also evaluate potential therapeutic targets of mechano-transcription process for the management of these disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abraham B. Beckers ◽  
Ellen Wilms ◽  
Zlatan Mujagic ◽  
Béla Kajtár ◽  
Kata Csekő ◽  
...  

Introduction: The world population is ageing, resulting in increased prevalence of age-related comorbidities and healthcare costs. Limited data are available on intestinal health in elderly populations. Structural and functional changes, including altered visceroperception, may lead to altered bowel habits and abdominal symptoms in healthy individuals and irritable bowel syndrome (IBS) patients. Our aim was to explore age-related changes in gastrointestinal symptoms and underlying mechanisms.Methods: In total, 780 subjects (IBS patients n = 463, healthy subjects n = 317) from two separate studies were included. Subjects were divided into different age groups ranging from young adult to elderly. Demographics and gastrointestinal symptom scores were collected from all participants using validated questionnaires. A subset of 233 IBS patients and 103 controls underwent a rectal barostat procedure to assess visceral hypersensitivity. Sigmoid biopsies were obtained from 10 healthy young adults and 10 healthy elderly. Expression of the visceral pain-associated receptors transient receptor potential (TRP) Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) genes were investigated by quantitative RT-PCR and immunofluorescence.Results: Both elderly IBS and healthy individuals showed significantly lower scores for abdominal pain (p < 0.001) and indigestion (p < 0.05) as compared to respective young adults. Visceral hypersensitivity was less common in elderly than young IBS patients (p < 0.001). Relative TRPA1 gene transcription, as well as TRPA1 and TRPV1 immunoreactivity were significantly lower in healthy elderly versus healthy young adults (p < 0.05).Conclusions: Our findings show an age-related decrease in abdominal pain perception. This may in part be related to decreased TRPA1 and/or TRPV1 receptor expression. Further studies are needed to reveal precise underlying mechanisms and the associations with intestinal health.


Author(s):  
Tian Yuan ◽  
Albert Orock ◽  
Beverley Greenwood-Van Meerveld

Cognitive behavioral therapy (CBT) improves the quality of life for patients with brain-gut disorders, however, the underlying mechanisms of CBT remain to be explored. Previously we showed that environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, ameliorates chronic stress-induced visceral hypersensitivity in a rodent model via mechanisms involving altered activity in the central nucleus of amygdala (CeA). In the present study, we investigated whether microglia-mediated synaptic plasticity in the CeA is a potential mechanism underlying the protective effects of EE against stress-induced visceral hypersensitivity. We sterotaxically implanted corticosterone (CORT) micropellets onto the dorsal margin of the CeA shown previously to induce colonic hypersensitivity. Animals were housed in EE cages or standard cages for 14 days following CORT implantation. Visceral sensitivity was assessed via visceromotor behavioral response to colorectal distension. Microglial morphology, microglia-mediated synaptic engulfment and the expression of synaptic pruning-related signals C1q, C3 and C3R were measured using immunofluorescence and RNAscope assay. We found that housing CORT implanted rats in EE cages for 14 days attenuated visceral hypersensitivity in both male and female rats as compared to control rats maintained in standard housing. EE reduced CORT-induced microglial remodeling and microglia-mediated synaptic pruning with reduced C1q and CR3, but not C3, expression. Our data suggest that exposure to EE is sufficient to ameliorate stress-induced visceral pain via reducing amygdala microglia-modulated neuronal plasticity.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yong-li Han ◽  
Xing-ming Peng ◽  
Hong-xing Zhang ◽  
Song Chen ◽  
Liang-yu Zhang

Visceral hypersensitivity (VH) is the predominant pathogenesis of functional dyspepsia (FD). Duodenal hypersensitivity along with nausea further reduces the comfort level in gastric balloon dilatation and inhibits gastric receptive relaxation. The potential mechanism behind electroacupuncture- (EA-) mediated alleviation of VH has not been elucidated. In an FD rat model with tail clamping stress, iodine acetamide (IA) induced VH. The rats were treated with EA with or without PAR2 antagonist FSLLRY-NH2, and the body weight, gastric sensitivity, compliance, and gastrointestinal motility were determined. Mast cells and activated degranulation were stained with toluidine blue (TB) staining and visualized under a transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of PAR2, PKC, and TRPV1 in the duodenum and dorsal root ganglion (DRG) and that of CGRP, SP in DRG, and c-fos in the spinal cord. EA alone and EA + antagonist enhanced the gastrointestinal motility but diminished the expression of TRPV1, CGRP, SP, and c-fos-downstream of PAR2/PKC pathway and alleviated VH in FD rats. However, there was no obvious superposition effect between the antagonists and EA + antagonists. The effect of EA alone was better than that of antagonists and EA + antagonists 2 alone. EA-induced amelioration of VH in FD rats was mediated by TRPV1 regulation through PAR2/PKC pathway. This protective mechanism involved several pathways and included several targets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Duiyin Jin ◽  
Yanan Liu ◽  
Siyi Lv ◽  
Qin Qi ◽  
Mei Li ◽  
...  

Objective. To evaluate the effects of electroacupuncture and moxibustion on brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) protein and mRNA expressions in the colon and dorsal root ganglia of IBS rats with visceral hypersensitivity and to explore their underlying therapeutic mechanisms. Method. Forty Sprague Dawley rats were randomly divided into normal, model, model + mild moxibustion (MM), model + electroacupuncture (EA), and model + pinaverium bromide (PB) groups, with eight rats in each group. Chronic visceral hypersensitive IBS rat models were established by colorectal distension (CRD) with mustard oil clyster. Rats in the MM and EA groups, respectively, received moxibustion and electroacupuncture treatments on the Tianshu (ST25) and Shangjuxu (ST37) acupoints once daily for 7 days, and rats in the PB group received pinaverium bromide by oral gavage once daily for 7 consecutive days. After treatment, rats underwent abdominal withdrawal reflex (AWR) scoring under CRD and colon histopathological examination. Immunohistochemistry and real-time quantitative PCR (RT-qPCR) were used to study the protein and mRNA expressions of BDNF and TrkB in the rat colon and dorsal root ganglia. Results. Compared with the normal group, AWR scores and body weight were clearly increased in the model group rats (both P < 0.01 ). The body weights were significantly elevated ( P < 0.01 , P < 0.05 ), but the AWR scores were reduced ( P < 0.05 , P < 0.01 ), after electroacupuncture and mild moxibustion treatment. Compared with levels in normal rats, BDNF and TrkB protein and mRNA expressions were significantly elevated in the IBS model rats ( P < 0.01 ) but were downregulated after mild moxibustion, electroacupuncture, and Western medicine treatment ( P < 0.01 ). Conclusion. Electroacupuncture and moxibustion improved visceral hypersensitivity of IBS rats possibly by reducing BDNF and TrkB protein and mRNA expressions in the colon and dorsal root ganglia.


Sign in / Sign up

Export Citation Format

Share Document