scholarly journals Syntheses and In-vitro Evaluation of Tetrahydroaminoacridine (THA) Based Analogues as High Affinity Choline Transporter (HAChT) Imaging Probe

2016 ◽  
Vol 17 (2) ◽  
pp. 97-102
Author(s):  
Mohammad Anwar Ul Azim ◽  
Takashi Kozaka ◽  
Izumi Uno ◽  
Daisuke Miwa ◽  
Yoji Kitamura ◽  
...  

Introduction: In cholinergic neurons, high affinity choline uptake (HACU) by the high affinity choline transporter (HAChT) is a rate-limiting and regulatory step for the synthesis of Acetylcholine (Ach).Thus, HAChT appear to be a relatively specific presynaptic marker for cholinergic neurons in Alzheimer’s disease.Objectives: The principle objective of the study is to check the affinity of tetrahydroaminoacridine (THA) derivatives for HAChT. Another objective of the research work is to clarify whether the hemicholinium-3 (ChT inhibitor) and HACU enhancer molecules share the same binding sites or not.Materials and Methods: The inhibition activities of tacrine, the 2,3-dimethylfuran derivative of tacrine (DMTA) and their corresponding 2-oxo-1-pyrrolidineacetyl derivatives, namely PTAA and MKC-231 were measured by displacement of a typical HAChT antagonist [3H]HC-3 in rat cerebral membrane. The percentage of inhibition against the binding of [3H]HC-3 to HAChT were calculated using GraphPad Prism v4 software.Results: Hemicholinium-3 showed affinity for HAChT (IC50 = 20 nM) in the in vitro binding assay. A very insignificant inhibition activity (IC50 = 1000 nM) of Tacrine was revealed. The newly synthesized tacrine derivatives, DMTA and PTAA did not show any affinity for HAChT. Although MKC-231 was reported to enhance cholinergic activity at synaptic terminals, it did not show any affinity for the HAChT in [3H]HC-3 binding assay.Conclusion: In vitro [3H]HC-3 binding assay revealed no affinity of MKC-231, tacrine and its corresponding2-oxo-1-pyrrolidineacetate derivative towards HAChT. So, it is worthy to develop radiolabeled HC-3 derivatives with high affinity for HAChT, which can diffuse the BBB, to enable the in vivo investigation of HACU system.Bangladesh J. Nuclear Med. 17(2): 97-102, July 2014

2005 ◽  
Vol 157 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Brygida Berse ◽  
Weronika Szczecinska ◽  
Ignacio Lopez-Coviella ◽  
Beata Madziar ◽  
Victoria Zemelko ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chen Zhao ◽  
Mengjuan Lin ◽  
Yasi Pan ◽  
Baoping Yu

Background. Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1) is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs) and the role of CHT1 in visceral hypersensitivity. Methods. Repetitive water avoidance stress (WAS) was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD) was determined, and the abdominal withdrawal reflex (AWR) and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3), the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results. Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion. Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2020 ◽  
Vol 16 (8) ◽  
pp. 1147-1156
Author(s):  
Ruchi Singh ◽  
Syed M. Hasan ◽  
Amit Verma ◽  
Sanjay K. Panda

Background: A plant is a reservoir of potentially useful active chemical entities which act as drugs as well as intermediates for the discovery of newer molecules and provide newer leads for modern drug synthesis. The demand for new compounds in the field of medicine and biotechnology is centuries old and with a rise in chronic diseases and resistance to existing drugs in the field of anti-infective agents, the chemicals obtained from plant sources have been an area of attraction. The whole plant has possessed multiple pharmacological activities. This is scientifically established by in-vivo and in-vitro studies. Methods: Various electronic databases such as PubMed, Science Direct, Scopus and Google were searched to collect the data of the present review. All the collected information is categorized into different sections as per the aim of the paper. Results: Fifty-six research and review papers have been studied and were included in this review article. After a detailed study, we provide a significant description of various phytochemicals present in Nyctanthes arbor-tristis Linn., which is responsible for various pharmacological activities. Twenty of studied articles gives a general introduction and ethnobotanical information about the plant, two papers contained microscopic detail of leaf and fruit. Twenty papers contained information about the phytoconstituents present in different parts of Nyctanthes arbor-tristis plant and fourteen articles reported pharmacological activities like antioxidant, anti-inflammatory, antiarthritic, antimicrobial and immunobiotic activity. Conclusion: This review explores the published research work comprising the ethnobotanical description of the subjected plant, distribution, phytochemical profile, and arthritis-related pharmacological activities.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Sign in / Sign up

Export Citation Format

Share Document