scholarly journals Adenosine A1 receptors in mouse pontine reticular formation modulate nociception only in the presence of systemic leptin

Neuroscience ◽  
2014 ◽  
Vol 275 ◽  
pp. 531-539 ◽  
Author(s):  
S.L. Watson ◽  
C.J. Watson ◽  
H.A. Baghdoyan ◽  
R. Lydic
2013 ◽  
Vol 118 (2) ◽  
pp. 327-336 ◽  
Author(s):  
George C. Gettys ◽  
Fang Liu ◽  
Ed Kimlin ◽  
Helen A. Baghdoyan ◽  
Ralph Lydic

Abstract Background: Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods: Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. Results: First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%), and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions: Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.


2002 ◽  
Vol 97 (6) ◽  
pp. 1597-1601 ◽  
Author(s):  
Diana Tanase ◽  
Helen A. Baghdoyan ◽  
Ralph Lydic

Background Both pain and the pharmacologic management of pain can cause the undesirable effect of sleep disruption. One goal of basic and clinical neuroscience is to facilitate rational drug development by identifying the brain regions and neurochemical modulators of sleep and pain. Adenosine is thought to be an endogenous sleep promoting substance and adenosinergic compounds can contribute to pain management. In the pontine brain stem adenosine promotes sleep but the effects of pontine adenosine on pain have not been studied. This study tested the hypothesis that an adenosine agonist would cause antinociception when microinjected into pontine reticular formation regions that regulate sleep. Methods The tail flick latency (TFL) test quantified the time in seconds for an animal to move its tail away from a thermal stimulus created by a beam of light. TFL measures were used to evaluate the antinociceptive effects of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA). Pontine microinjection of SPA (0.1 microg/0.25 microl, 0.88 mm) was followed by TFL measures as a function of time after drug delivery and across the sleep-wake cycle. Results Compared with saline (control), pontine administration of the adenosine agonist significantly increased latency to tail withdrawal (P < 0.0001). The increase in antinociceptive behavior evoked by the adenosine agonist SPA was blocked by pretreatment with the adenosine A1 receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 0.75 ng/0.25 microl, 10 microm). Conclusions These preclinical data encourage additional research on the cellular mechanisms by which adenosine in the pontine reticular formation contributes to the supraspinal modulation of pain.


Sign in / Sign up

Export Citation Format

Share Document