receptor agonist
Recently Published Documents


TOTAL DOCUMENTS

8287
(FIVE YEARS 1336)

H-INDEX

123
(FIVE YEARS 14)

2022 ◽  
Vol 100 ◽  
pp. 103493
Author(s):  
Pieter E. Oomen ◽  
Dominique Schori ◽  
Karsten Tögel-Lins ◽  
Dean Acreman ◽  
Sevag Chenorhokian ◽  
...  

2022 ◽  
Author(s):  
Chamith Halahhakoon ◽  
Alexander Kaltenboeck ◽  
Marieke Martens ◽  
John G Geddes ◽  
Catherine J Harmer ◽  
...  

Background: Dopamine D2-like receptor agonists show promise as treatments for depression. They are thought to act by altering how individuals learn from rewarding experiences. However, the nature of these reward learning alterations, and the mechanisms by which they are produced is not clear. Reinforcement learning accounts describe three distinct processes that may produce similar changes in reward learning behaviour; increased reward sensitivity, increased inverse decision temperature and decreased value decay. As these processes produce equivalent effects on behaviour, arbitrating between them requires measurement of how expectations and prediction errors are altered. In the present study, we characterised the behavioural effects of a sustained 2-week course of the D2/3/4 receptor agonist pramipexole on reward learning and used fMRI measures of expectation and prediction error to assess which of these three mechanistic processes were responsible for the behavioural effects. Methods: 40 healthy volunteers (Age: 18-43, 50% female) were randomly allocated to receive either two weeks of pramipexole (titrated to 1mg/day) or placebo in a double-blind, between subject design. Participants completed a probabilistic instrumental learning task, in which stimuli were associated with either rewards or losses, before the pharmacological intervention and twice between days 12-15 of the intervention (once with and once without fMRI). Both asymptotic choice accuracy, and a reinforcement learning model, were used to assess reward learning. Results: Behaviourally, pramipexole specifically increased choice accuracy in the reward condition, with no effect in the loss condition. Pramipexole increased the BOLD response in the orbital frontal cortex during the expectation of win trials but decreased the BOLD response to reward prediction errors in the ventromedial prefrontal cortex. This pattern of results indicates that pramipexole enhances choice accuracy by reducing the decay of estimated values during reward learning. Conclusions: The D2-like receptor agonist pramipexole enhances reward learning by preserving learned values. This is a plausible candidate mechanism for pramipexoles observed anti-depressant effect.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chenran Wang ◽  
Shen Sun ◽  
Jing Jiao ◽  
Xinhua Yu ◽  
Shaoqiang Huang

Abstract Background Delta-opioid receptor is widely expressed in human and rodent hearts, and has been proved to protect cardiomyocytes against ischemia/reperfusion and heart failure. The antagonist of delta-opioid receptor could block the rescue effect of lipid emulsion against local anesthetic cardiotoxicity. However, no evidence is available for the direct effect of delta-opioid-receptor agonists on the cardiotoxicity of local anesthetics. Methods Anesthetized Sprague Dawley rats were divided into five groups. Group NS received 2 ml·kg−1·min−1 normal saline, group LE received 2 ml·kg−1·min−1 30% lipid emulsion and group BW received 0.1, 1.0, or 5.0 mg/kg BW373U86, a delta-opioid-receptor agonist, for 5 min. Then 0.5% bupivacaine was infused intravenously at a rate of 3.0 mg·kg−1·min−1 until asystole. The time of arrhythmia, 50% mean arterial pressure-, 50% heart rate-reduction and asystole were recorded, and the dose of bupivacaine at each time point was calculated. Results All three different doses of BW373U86 did not affect the arrhythmia, 50% mean arterial pressure-reduction, 50% heart rate-reduction and asystole dose of bupivacaine compared with group NS. 30% LE significantly increased the bupivacaine threshold of 50% mean arterial pressure-reduction (17.9 [15.4–20.7] versus 7.2 [5.9–8.7], p = 0.018), 50% heart rate-reduction (18.7 ± 4.2 versus 8.8 ± 1.7, p < 0.001) and asystole (26.5 [21.0–29.1] versus 11.3 [10.7–13.4], p = 0.008) compared with group NS. There was no difference between group LE and group NS in the arrhythmia dose of bupivacaine (9.9 [8.9–11.7] versus 5.6 [4.5–7.0], p = 0.060). Conclusions Our data show that BW373U86 does not affect the cardiotoxicity of bupivacaine compared with NS control in rats. 30% LE pretreatment protects the myocardium against bupivacaine-induced cardiotoxicity.


Author(s):  
Ibrahim Ethem Torun ◽  
Yasemin Baranoglu Kılınc ◽  
Erkan Kilinc

ABSTRACT Background: Epilepsy has neuropsychiatric comorbidities such as depression, bipolar disorder, and anxiety. Drugs that target epilepsy may also be useful for its neuropsychiatric comorbidities. Objective: To investigate the effects of serotonergic modulation on pro-inflammatory cytokines and the seizures in pentylenetetrazole (PTZ)-induced seizure model in rats. Methods: Male Wistar rats were injected intraperitoneally with serotonin, selective serotonin reuptake inhibitor fluoxetine, 5-HT1B/D receptor agonist sumatriptan, or saline 30 min prior to PTZ treatment. Behavioral seizures were assessed by the Racine's scale. Concentrations of IL-1β, IL-6, and TNF-α in serum and brain tissue were determined by ELISA. Results: Serotonin and fluoxetine, but not sumatriptan, alleviated PTZ-induced seizures by prolonging onset times of myoclonic-jerk and generalized tonic-clonic seizures. The anti-seizure effect of fluoxetine was greater than that of serotonin. Likewise, serotonin and fluoxetine, but not sumatriptan, reduced PTZ-induced increases in the levels of IL-1β and IL-6 in both serum and brain tissue. None of the administered drugs including PTZ affected TNF-α concentrations. Conclusions: Our findings suggest that endogenous and exogenous serotonin exhibits anticonvulsant effects by suppressing the neuroinflammation. It seems that 5-HT1B/D receptors do not mediate anticonvulsant and anti-neuroinflammatory effects of serotonin.


2022 ◽  
Vol 15 ◽  
Author(s):  
Changliang Zhu ◽  
Lei Wang ◽  
Jiangwei Ding ◽  
Hailiang Li ◽  
Din Wan ◽  
...  

A high percentage of relapse to compulsive cocaine-taking and cocaine-seeking behaviors following abstinence constitutes a major obstacle to the clinical treatment of cocaine addiction. Thus, there is a substantial need to develop effective pharmacotherapies for the prevention of cocaine relapse. The reinstatement paradigm is known as the most commonly used animal model to study relapse in abstinent human addicts. The primary aim of this study is to investigate the potential effects of systemic administration of glucagon-like peptide-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) on the cocaine- and stress-triggered reinstatement of cocaine-induced conditioned place preference (CPP) in male C57BL/6J mice. The biased CPP paradigm was induced by alternating administration of saline and cocaine (20 mg/kg), followed by extinction training and then reinstatement by either a cocaine prime (10 mg/kg) or exposure to swimming on the reinstatement test day. To examine the effects of Ex4 on the reinstatement, Ex4 was systemically administered 1 h after the daily extinction session. Additionally, we also explored the associated molecular basis of the behavioral effects of Ex4. The expression of nuclear factor κβ (NF-κβ) in the nucleus accumbens (NAc) was detected using Western blotting. As a result, all animals that were treated with cocaine during the conditioning period successfully acquired CPP, and their CPP response was extinguished after 8 extinction sessions. Furthermore, the animals that were exposed to cocaine or swimming on the reinstatement day showed a significant reinstatement of CPP. Interestingly, systemic pretreatment with Ex4 was sufficient to attenuate cocaine- and stress-primed reinstatement of cocaine-induced CPP. Additionally, the expression of NF-κβ, which was upregulated by cocaine, was normalized by Ex4 in the cocaine-experienced mice. Altogether, our study reveals the novel effect of Ex4 on the reinstatement of cocaine-induced CPP and suggests that GLP-1R agonists appear to be highly promising drugs in the treatment of cocaine use disorder.


Author(s):  
Xiao-Yu Liu ◽  
Li-Fei Zheng ◽  
Yan-Yan Fan ◽  
Qian-Ying Shen ◽  
Yao Qi ◽  
...  

In vivo administration dopamine (DA) receptor (DR)-related drugs modulates gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.


Sign in / Sign up

Export Citation Format

Share Document