Microinjection of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA) into the pontine reticular formation (PRF) of C57BL/6J mouse increases antinociception in a concentration-dependent manner

2012 ◽  
Vol 13 (4) ◽  
pp. S45
Author(s):  
S. Watson ◽  
M. Frank ◽  
C. Watson ◽  
H. Baghdoyan ◽  
R. Lydic
1993 ◽  
Vol 265 (4) ◽  
pp. F511-F519 ◽  
Author(s):  
M. Takeda ◽  
K. Yoshitomi ◽  
M. Imai

We investigated the role of adenosine A1-receptor in the regulation of basolateral Na(+)-3HCO3- cotransporter in the rabbit proximal convoluted tubule (PCT) microperfused in vitro by monitoring basolateral membrane potential and intracellular pH. FK-453, a highly specific A1 antagonist, inhibited basolateral HCO3- conductance in a concentration-dependent manner (10(-10)-10(-5) M). Other A1 antagonists, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) at 10(-5) M and theophylline at 10(-3) M, also had similar effects. N6-cyclohexyladenosine (CHA) at 10(-7) M attenuated the effect of low concentration (10(-8) M) of FK-453. Either enhancement of the degradation of adenosine by 0.1 U/ml adenosine deaminase (ADA) or inhibition of adenosine release from the cells by 10(-6) M S-(4-nitrobenzyl)-6-thioinosine (NBTI) mimicked the effects of A1 antagonists. These observations suggest that endogenous adenosine is released from PCT cells and stimulates Na(+)-3HCO3- cotransporter. Both 10(-4) M 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP) and 10(-6) M forskolin also inhibited basolateral HCO3- conductance. Both 10(-6) M FK-453 and 10(-4) M CPT-cAMP decreased the initial rate as well as the magnitude of intracellular acidification induced by reduction of peritubular HCO3- concentration from 25 to 0 mM. Neither 10(-6) M FK-453 nor 10(-7) M CHA changed intracellular Ca2+ concentration as measured by fura-2 fluorescence. These results indicate that adenosine might stimulate HCO3- exit across the basolateral membrane through Na(+)-3HCO3- cotransporter by decreasing intracellular cAMP via A1-receptor activation.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 118 (2) ◽  
pp. 327-336 ◽  
Author(s):  
George C. Gettys ◽  
Fang Liu ◽  
Ed Kimlin ◽  
Helen A. Baghdoyan ◽  
Ralph Lydic

Abstract Background: Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods: Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. Results: First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%), and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions: Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.


2002 ◽  
Vol 97 (6) ◽  
pp. 1597-1601 ◽  
Author(s):  
Diana Tanase ◽  
Helen A. Baghdoyan ◽  
Ralph Lydic

Background Both pain and the pharmacologic management of pain can cause the undesirable effect of sleep disruption. One goal of basic and clinical neuroscience is to facilitate rational drug development by identifying the brain regions and neurochemical modulators of sleep and pain. Adenosine is thought to be an endogenous sleep promoting substance and adenosinergic compounds can contribute to pain management. In the pontine brain stem adenosine promotes sleep but the effects of pontine adenosine on pain have not been studied. This study tested the hypothesis that an adenosine agonist would cause antinociception when microinjected into pontine reticular formation regions that regulate sleep. Methods The tail flick latency (TFL) test quantified the time in seconds for an animal to move its tail away from a thermal stimulus created by a beam of light. TFL measures were used to evaluate the antinociceptive effects of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA). Pontine microinjection of SPA (0.1 microg/0.25 microl, 0.88 mm) was followed by TFL measures as a function of time after drug delivery and across the sleep-wake cycle. Results Compared with saline (control), pontine administration of the adenosine agonist significantly increased latency to tail withdrawal (P < 0.0001). The increase in antinociceptive behavior evoked by the adenosine agonist SPA was blocked by pretreatment with the adenosine A1 receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 0.75 ng/0.25 microl, 10 microm). Conclusions These preclinical data encourage additional research on the cellular mechanisms by which adenosine in the pontine reticular formation contributes to the supraspinal modulation of pain.


1994 ◽  
Vol 266 (5) ◽  
pp. F791-F796 ◽  
Author(s):  
R. M. Edwards ◽  
W. S. Spielman

We examined the effects of adenosine and adenosine analogues on arginine vasopressin (AVP)-induced increases in osmotic water permeability (Pf; micron/s) and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in rat inner medullary collecting ducts (IMCDs). When added to the bath, the A1 receptor agonist N6-cyclohexyladenosine (CHA) produced a rapid and reversible inhibition of AVP-stimulated (10 pM) Pf (1,781 +/- 195 to 314 +/- 85 microns/s at 0.3 microM CHA; n = 9). The inhibitory effect of CHA was concentration dependent, with a 50% inhibitory concentration of 10 nM. The effect of CHA was inhibited by prior exposure of IMCDs to the A1 receptor antagonist 1,3-dipropylxanthine-8-cyclopentylxanthine (DP-CPX; 1 microM) or by preincubation with pertussis toxin. CHA had no effect on cAMP-induced increases in Pf. In addition to CHA, adenosine and the nonselective agonist 5'-(N-ethylcarboxamido)-adenosine (NECA) inhibited AVP-dependent Pf by > or = 70%, whereas the A2 receptor agonist CGS-21680 had no effect. Luminal adenosine (0.1 mM) had no effect on basal or AVP-stimulated Pf. CHA, NECA, and adenosine but not CGS-21680 inhibited AVP-stimulated cAMP accumulation in a concentration-dependent manner (50% inhibitory concentrations 0.1–300 nM). The inhibitory effect of CHA on AVP-stimulated cAMP accumulation was attenuated by DPCPX. We conclude that adenosine, acting at the basolateral membrane, inhibits AVP action in the IMCD via interaction with A1 receptors. The inhibition occurs proximal to cAMP generation and likely involves an inhibitory G protein.


Sign in / Sign up

Export Citation Format

Share Document