Modulation of medial geniculate nucleus neuronal activity by electrical stimulation of the nucleus accumbens

Neuroscience ◽  
2015 ◽  
Vol 308 ◽  
pp. 1-10 ◽  
Author(s):  
K.M. Barry ◽  
A.G. Paolini ◽  
D. Robertson ◽  
W.H.A.M. Mulders
Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Kristin M. Barry ◽  
Donald Robertson ◽  
Wilhelmina H. A. M. Mulders

In the adult auditory system, loss of input resulting from peripheral deafferentation is well known to lead to plasticity in the central nervous system, manifested as reorganization of cortical maps and altered activity throughout the central auditory pathways. The auditory system also has strong afferent and efferent connections with cortico-limbic circuitry including the prefrontal cortex and the question arises whether this circuitry is also affected by loss of peripheral input. Recent studies in our laboratory showed that PFC activation can modulate activity of the auditory thalamus or medial geniculate nucleus (MGN) in normal hearing rats. In addition, we have shown in rats that cochlear trauma resulted in altered spontaneous burst firing in MGN. However, whether the PFC influence on MGN is changed after cochlear trauma is unknown. We investigated the effects of electrical stimulation of PFC on single neuron activity in the MGN in anaesthetized Wistar rats 2 weeks after acoustic trauma or sham surgery. Electrical stimulation of PFC showed a variety of effects in MGN neurons both in sham and acoustic trauma groups but inhibitory responses were significantly larger in the acoustic trauma animals. These results suggest an alteration in functional connectivity between PFC and MGN after cochlear trauma. This change may be a compensatory mechanism increasing sensory gating after the development of altered spontaneous activity in MGN, to prevent altered activity reaching the cortex and conscious perception.


1991 ◽  
Vol 66 (6) ◽  
pp. 2084-2094 ◽  
Author(s):  
R. W. Blair ◽  
A. R. Evans

1. Medullary raphespinal neurons antidromically activated from the T2-T5 segments were tested for responses to electrical stimulation of cervical vagal and thoracic sympathetic afferents (by stimulating the left stellate ganglion), somatic probing, auditory stimuli, and visual stimuli in cats anesthetized with alpha-chloralose. A total of 99 neurons in the raphe nuclei were studied; the locations of 76 cells were histologically confirmed. Neurons were located in raphe magnus (RM, 65%), raphe obscurus (RO, 32%), and raphe pallidus (RPa, 4%). The mean conduction velocity of these neurons was 62 +/- 2.9 (SE) m/s with a range of 1.1-121 m/s. 2. A total of 60/99 tested neurons responded to electrical stimulation of sympathetic afferents. Quantitation of responses was obtained for 55 neurons. With one exception, all responsive neurons were excited and exhibited an early burst of spikes with a mean latency of 16 +/- 1.2 ms. From a spontaneous discharge rate of 5.2 +/- 1.2 spikes/s, neuronal activity increased by 2.9 +/- 0.3 spikes/stimulus. In addition to an early peak, 15 neurons (25%) exhibited a late burst of spikes with a latency of 182 +/- 12.9 ms; neuronal activity increased by 5.0 +/- 1.3 spikes/stimulus. Duration of the late peak (130 +/- 18.5 ms) was longer than for the early peak (18 +/- 0.7 ms), but threshold voltages for eliciting each peak were comparable. Sixteen of 29 spontaneously active neurons exhibited a postexcitatory depression of activity that lasted for 163 +/- 19.1 ms. All but one tested neuron in RO responded to stimulation of sympathetic afferents, but 65% of neurons in RM responded to this stimulus. 3. In response to vagal afferent stimulation, 19% of 57 neurons exhibited inhibition only, 11% were only excited, and 9% were either excited or inhibited, depending on the stimulus paradigm used; the remaining 61% of neurons were unresponsive. From a spontaneous rate of 7.9 +/- 3.8 spikes/s, excited cells increased their discharge rate by 1.6 +/- 0.3 spikes/stimulus. Activity of inhibited cells was reduced from 21.3 +/- 5.8 to 7.8 +/- 3.1 spikes/s. The conditioning-test (CT) technique was used to assess 11 neurons' responses. Stellate ganglion stimulation was the test stimulus, and vagal stimulation the conditioning stimulus. Vagal stimulation reduced the neuronal responses to stellate ganglion stimulation by an average of 50% with a CT interval of 60-100 ms, and cell responses returned to control after 300 ms. With spontaneous cell activity, low frequencies of vagal stimulation were generally excitatory, and high frequencies (10-20 Hz) inhibitory.(ABSTRACT TRUNCATED AT 400 WORDS)


Life Sciences ◽  
1989 ◽  
Vol 44 (9) ◽  
pp. 633-641 ◽  
Author(s):  
Larry Kokkinidis ◽  
R. Duncan Kirkby ◽  
Bryon D. McCarter ◽  
Thomas B. Borowski

2008 ◽  
Vol 99 (6) ◽  
pp. 2938-2945 ◽  
Author(s):  
Zhuo Zhang ◽  
Chun-Hua Liu ◽  
Yan-Qin Yu ◽  
Kenji Fujimoto ◽  
Ying-Shing Chan ◽  
...  

Electrical stimulation of the auditory cortex (AC) causes both facilitatory and inhibitory effects on the medial geniculate body (MGB). The purpose of this study was to identify the corticofugal inhibitory pathway to the MGB. We assessed two potential circuits: 1) the cortico-colliculo-thalamic circuit and 2) cortico-reticulo-thalamic one. We compared intracellular responses of MGB neurons to electrical stimulation of the AC following bilateral ablation of the inferior colliculi (IC) or thalamic reticular nucleus (TRN) in anesthetized guinea pigs. Cortical stimulation with intact TRN could cause strong inhibitory effects on the MGB neurons. The corticofugal inhibition remained effective after bilateral IC ablation, but it was minimized after the TRN was lesioned with kainic acid. Synchronized TRN neuronal activity and MGB inhibitory postsynaptic potentials (IPSPs) were observed with multiple recordings. The results suggest that corticofugal inhibition traverses the corticoreticulothalamic pathway, indicating that the colliculi-geniculate inhibitory pathway is probably only for feedforward inhibition.


2009 ◽  
Vol 61 (5) ◽  
pp. 1073-1082 ◽  
Author(s):  
Yiqun Xue ◽  
Xiying Chen ◽  
Thomas Grabowski ◽  
Jinhu Xiong

2019 ◽  
Vol 154 ◽  
pp. 107-115 ◽  
Author(s):  
J.C. de Oliveira ◽  
B.M.B. Drabowski ◽  
S.M.A.F. Rodrigues ◽  
R.M. Maciel ◽  
M.F.D. Moraes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document