locomotor activity
Recently Published Documents


TOTAL DOCUMENTS

4233
(FIVE YEARS 578)

H-INDEX

108
(FIVE YEARS 7)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Naresh Kumar ◽  
Monu Yadav ◽  
Anil Kumar ◽  
Monika Kadian ◽  
Sunil Kumar

Abstract Background Psychosis is a complex mental illness divided by positive symptoms, negative symptoms, and cognitive decline. Clinically available medicines are associated with some serious side effects which limit their use. Treatment with flavonoids has been associated with delayed onset and development, decreased risk, or increased improvement of various neuropsychiatric disorders including psychosis with negligible side effects. Therefore, the present study was aimed to investigate the protective effects of hesperidin (flavonoid) alone or its combination with coenzyme Q10 against ketamine-induced psychotic symptoms in mice. Results Ketamine (50 mg/kg, i.p.) was given for 21 days to induce psychosis in Laca mice of either sex. Locomotor activity and stereotypic behaviors, immobility duration (forced swim test), and increased transfer latency (elevated plus maze) were performed to test the effect of hesperidin (50 mg/kg, 100 mg/kg, 200 mg/kg, p.o.) and coenzyme Q10 (20 mg/kg, 40 mg/kg, p.o.) and combination of hesperidin + coenzyme Q10 followed by biochemical and mitochondrial complexes assays. For 21 days, ketamine (50 mg/kg, i.p.) administration significantly produced increased locomotor activity and stereotypic behaviors (positive symptoms), increased immobility duration (negative symptoms) and cognitive deficits (increases transfer latency) weakens oxidative defense and mitochondrial function. Further, 21 days’ administration of hesperidin and coenzyme Q10 significantly reversed the ketamine-induced psychotic behavioral changes and biochemical alterations and mitochondrial dysfunction in the discrete areas (prefrontal cortex and hippocampus) of mice brains. The potential effect of these drugs was comparable to olanzapine treatment. Moreover, the combination of hesperidin with coenzyme Q10 and or a combination of hesperidin + coenzyme Q10 + olanzapine treatment did not produce a significant effect compared to their per se effect in ketamine-treated animals. Conclusions The study revealed that hesperidin alone or in combination with coenzyme Q10 could reduce psychotic symptoms and improve mitochondrial functions and antioxidant systems in mice, suggesting neuroprotective effects against psychosis.


2022 ◽  
pp. 074873042110694
Author(s):  
Ciearra B. Smith ◽  
Vincent van der Vinne ◽  
Eleanor McCartney ◽  
Adam C. Stowie ◽  
Tanya L. Leise ◽  
...  

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein ( Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;Dbp KI/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


2022 ◽  
Author(s):  
Eugenia Sanchez ◽  
Travis Ramirez ◽  
Lauren A O'Connell

Animals show a spectrum of avoidance-tolerance to foods containing toxic secondary metabolites. However, this spectrum has not been evaluated in animals that may actively seek out these compounds as a chemical defense. Poison frogs sequester toxic and unpalatable alkaloids from their diet, and in some species, tadpoles are exposed to these toxins before the development of their skin granular glands, which are used for toxin compartmentalization. Here, we examined the effects of the alkaloid decahydroquinoline (DHQ) in tadpoles of the Mimetic poison frog, Ranitomeya imitator, using alkaloid supplemented food. We found that although their survival is lowered by the alkaloid, their development is only mildly affected, with no evident effects on their growth. Furthermore, locomotor activity and feeding behavior was altered in the first week of DHQ treatment, probably in part through nicotinic blockade. However, after two weeks, tadpoles learned to avoid the alkaloid by visiting the food area only when necessary to eat. Our results suggest that poison frogs navigate the avoidance-tolerance spectrum during the development of their sequestration machinery.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Francisco Chacón ◽  
Catalina Muñoz-San Martín ◽  
Antonella Bacigalupo ◽  
Bárbara Álvarez-Duhart ◽  
Rigoberto Solís ◽  
...  

American trypanosomiasis is a disease caused by the flagellate protozoan Trypanosoma cruzi, which is transmitted mainly in endemic areas by blood-sucking triatomine vectors. Triatoma infestans is the most important vector in the southern cone of South America, exhibiting a nocturnal host-seeking behavior. It has been previously documented that the parasite produces changes in some triatomine species, but this is the first time that the behavior of a vector has been evaluated in relation to its parasite load. After comparing the movement events and distance traveled of infected and non-infected T. infestans, we evaluated the change produced by different T. cruzi parasite loads on its circadian locomotor activity. We observed differences between infected and non-infected triatomines, and a significant relation between the parasite load and the increase in locomotor activity of T. infestans, which was accentuated during the photophase. This could have direct implications on the transmission of T. cruzi, as the increased movement and distance traveled could enhance the contact of the vector with the host, while increasing the predation risk for the vector, which could both constitute a risk for vectorial and oral transmission to mammals.


2022 ◽  
Vol 23 (2) ◽  
pp. 615
Author(s):  
Lisa L. Wilson ◽  
Shainnel O. Eans ◽  
Insitar Ramadan-Siraj ◽  
Maria N. Modica ◽  
Giuseppe Romeo ◽  
...  

Neuropathic pain is a significant problem with few effective treatments lacking adverse effects. The sigma-1 receptor (S1R) is a potential therapeutic target for neuropathic pain, as antagonists for this receptor effectively ameliorate pain in both preclinical and clinical studies. The current research examines the antinociceptive and anti-allodynic efficacy of SI 1/28, a recently reported benzylpiperazine derivative and analog of the S1R antagonist SI 1/13, that was 423-fold more selective for S1R over the sigma-2 receptor (S2R). In addition, possible liabilities of respiration, sedation, and drug reinforcement caused by SI 1/28 have been evaluated. Inflammatory and chemical nociception, chronic nerve constriction injury (CCI) induced mechanical allodynia, and adverse effects of sedation in a rotarod assay, conditioned place preference (CPP), and changes in breath rate and locomotor activity were assessed after i.p. administration of SI 1/28. Pretreatment with SI 1/28 produced dose-dependent antinociception in the formalin test, with an ED50 (and 95% C.I.) value of 13.2 (7.42–28.3) mg/kg, i.p. Likewise, SI 1/28 produced dose-dependent antinociception against visceral nociception and anti-allodynia against CCI-induced neuropathic pain. SI 1/28 demonstrated no impairment of locomotor activity, conditioned place preference, or respiratory depression. In summary, SI 1/28 proved efficacious in the treatment of acute inflammatory pain and chronic neuropathy without liabilities at therapeutic doses, supporting the development of S1R antagonists as therapeutics for chronic pain.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mark A. Smith ◽  
Shannon L. Ballard ◽  
Clarise F. Ballesteros ◽  
Samantha A. Bonge ◽  
Alexander T. Casimir ◽  
...  

Opioids and stimulants are often used in combination for both recreational and non-recreational purposes. High-efficacy mu opioid agonists generally increase the behavioral effects of stimulants, whereas opioid receptor antagonists generally attenuate the behavioral effects of stimulants; however, less is known regarding the interactions between stimulants and opioids possessing low to intermediate efficacy at the mu receptor. The purpose of this study was to examine the role of an opioid's relative efficacy at the mu receptor in altering the behavioral effects of dextro(d-)amphetamine. To this end, opioids possessing a range of relative efficacy at the mu receptor were examined alone and in combination with cumulative doses of d-amphetamine on a test of open-field, locomotor activity in male rats. Levorphanol, buprenorphine, butorphanol, nalbuphine, (-)-pentazocine, (-)-metazocine, (-)-cyclazocine, (-)-NANM, and nalorphine increased the locomotor effects of d-amphetamine in either an additive or greater-than-additive manner according to an effect-additive model. Only the selective, high-efficacy kappa agonist, spiradoline, and the non-selective opioid receptor antagonist, naloxone, failed to increase the effects of d-amphetamine under the conditions examined. These data indicate that opioids possessing a large range of relative efficacy at the mu receptor, including those possessing very low relative efficacy, significantly increase the locomotor effects of d-amphetamine.


2022 ◽  
Vol 15 ◽  
Author(s):  
Juan Francisco Rodríguez-Landa ◽  
Fabiola Hernández-López ◽  
Lucía Martínez-Mota ◽  
Damiana Scuteri ◽  
Blandina Bernal-Morales ◽  
...  

Systemic injections of the flavonoid chrysin (5,7-dihydroxyflavone) exert anxiolytic-like effects in ovariectomised and cycling female rats through actions on gamma-aminobutyric acid-A (GABAA) receptors; however, it is unknown if chrysin directly acts on brain structures that are involved in regulating emotional processes, such as the hippocampus. The present study evaluated the effects of intrahippocampal microinjections of 0.25, 0.5, and 1 μg of chrysin on anxiety-like behaviour in the elevated plus maze (EPM) and locomotor activity test (LAT) in female rats in proestrus and dioestrus. Similar doses of the neurosteroid allopregnanolone were used as a reference GABAergic anxiolytic drug. The participation of the GABAA/benzodiazepine receptor complex was evaluated by administering the antagonists picrotoxin, bicuculline and flumazenil. In proestrus, 0.5 and 1 μg of chrysin and allopregnanolone induced anxiogenic-like behaviour. In dioestrus, chrysin, and allopregnanolone (0.5 μg) induced anxiolytic-like effects. Picrotoxin, bicuculline and flumazenil prevented the effects of chrysin and allopregnanolone in both proestrus and dioestrus. None of the treatments significantly affected locomotor activity. These results indicate that the GABAA/benzodiazepine receptor complex in the dorsal hippocampus regulates the effects of chrysin on anxiety-like behaviour, similar to the actions of allopregnanolone. The divergent effects of treatments across the oestrous cycle phases suggest complex interactions between GABAA receptors and compounds with an anxiolytic potential.


2022 ◽  
Author(s):  
Hoda Ranjbar ◽  
Monavareh Soti ◽  
mahyar janahmadi ◽  
Kristi A. Kohlmeier ◽  
vahid sheibani ◽  
...  

Abstract Cerebellar ataxia is a neurodegenerative disorder leading to severe motor incoordination. Recently it has been suggested that cannabinoids play a role in modulation of ataxic symptoms. In order to understand the possible therapeutic effect of cannabinoids for management of cerebellar ataxia, we used cannabinoid agonist/antagonists to target the cannabinoid type 1 receptor (CB1R) in the 3 acetyl pyridine (3AP) mouse model of ataxia. The role of the CB1R was examined by using three different doses of the CB1R agonist, WIN55,212-2 (WIN; 0.1, 0.5, 1 mg/kg) administrated 30 min prior to 3AP (55 mg/kg, i.p.) which leads to motor impairment through destruction of the inferior olive. In some recordings, the CB1R antagonist AM251(1 mg/kg) was given in combination with WIN. Locomotor activity and motor coordination were impaired by 3AP, and the application of WIN did not ameliorate this effect. However, the abnormal gait, rearing and grooming caused by 3AP were prevented by co-administration of AM251 with WIN. While the addition of the CB1R antagonist inhibition improved some ataxic symptoms, there was no effect of AM251 on balance or locomotor activity when co-administrated with WIN. Behavioral testing indicated that not only did WIN fail to exert any protective effect on ataxic symptoms, it exacerbated ataxic symptoms, suggesting that CB1R agonists may not be the ideal therapeutic drug in this disorder. When taken together, the findings from the present study indicate that cannabinoid modulation of ataxia symptoms may not act solely through CB1Rs and other cannabinoid receptors should be consider in future studies.


Sign in / Sign up

Export Citation Format

Share Document