scholarly journals The cosmic ray muon tomography facility based on large scale MRPC detectors

Author(s):  
Xuewu Wang ◽  
Ming Zeng ◽  
Zhi Zeng ◽  
Yi Wang ◽  
Ziran Zhao ◽  
...  
2018 ◽  
Author(s):  
Alessandro Lechmann ◽  
David Mair ◽  
Akitaka Ariga ◽  
Tomoko Ariga ◽  
Antonio Ereditato ◽  
...  

Abstract. In recent years, the use of radiographic inspection with cosmic-ray muons has spread into multiple research and industrial fields. This technique is based on the high-penetration power of cosmogenic muons. Specifically, it allows the resolution of internal density structures of large scale, geological objects through precise measurement of the muon absorption rate. So far in many previous works, this muon absorption rate has been considered to depend solely on the density of traversed material (under the assumption of a standard rock) but the variation in chemical composition has not been taken seriously into account. However, from our experience with muon tomography in Alpine environments we find that this assumption causes a substantial bias on the muon flux calculation, particularly where the target consists of high {Z2/A} (like basalts) or low {Z2/A} (e.g. dolomites) rocks and where the material thickness exceeds 300 m. In this paper we derive an energy loss equation for different minerals and we additionally derive a related equation for mineral assemblages that can be used for any rock type on which mineralogical data is available. Thus, for muon tomography experiments in which high/low {Z2/A} rock thicknesses can be expected, it is advisable to plan an accompanying geological field campaign to determine a realistic rock model.


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1517-1533 ◽  
Author(s):  
Alessandro Lechmann ◽  
David Mair ◽  
Akitaka Ariga ◽  
Tomoko Ariga ◽  
Antonio Ereditato ◽  
...  

Abstract. In recent years, the use of radiographic inspection with cosmic-ray muons has spread into multiple research and industrial fields. This technique is based on the high-penetration power of cosmogenic muons. Specifically, it allows the resolution of internal density structures of large-scale geological objects through precise measurements of the muon absorption rate. So far, in many previous works, this muon absorption rate has been considered to depend solely on the density of traversed material (under the assumption of a standard rock) but the variation in chemical composition has not been taken seriously into account. However, from our experience with muon tomography in Alpine environments, we find that this assumption causes a substantial bias in the muon flux calculation, particularly where the target consists of high {Z2∕A} rocks (like basalts and limestones) and where the material thickness exceeds 300 m. In this paper, we derive an energy loss equation for different minerals and we additionally derive a related equation for mineral assemblages that can be used for any rock type on which mineralogical data are available. Thus, for muon tomography experiments in which high {Z2∕A} rock thicknesses can be expected, it is advisable to plan an accompanying geological field campaign to determine a realistic rock model.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4804
Author(s):  
Marcin Piekarczyk ◽  
Olaf Bar ◽  
Łukasz Bibrzycki ◽  
Michał Niedźwiecki ◽  
Krzysztof Rzecki ◽  
...  

Gamification is known to enhance users’ participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.


Author(s):  
P. Checchia ◽  
M. Benettoni ◽  
G. Bettella ◽  
E. Conti ◽  
L. Cossutta ◽  
...  

A short description of the muon tomography demonstrator at the INFN Laboratori Nazionali di Legnaro near Padua, Italy, is given and the principal achievements owing to the data collected at that experimental facility are presented. In particular, the feasibility studies for several applications based on the muon-tomographic technology, within national and European projects, are discussed. The experimental problems and the procedures used to improve the performance are underlined. In addition, new activities and the related detector optimization are illustrated. This article is part of the Theo Murphy meeting issue ‘Cosmic-ray muography’.


2014 ◽  
Vol 66 ◽  
pp. 10005 ◽  
Author(s):  
R. Kaiser ◽  
A. Clarkson ◽  
D. J. Hamilton ◽  
M. Hoek ◽  
D. G. Ireland ◽  
...  

2020 ◽  
Vol 83 (2) ◽  
pp. 258-261
Author(s):  
N. I. Bozhko ◽  
A. A. Borisov ◽  
A. S. Kozhin ◽  
R. M. Fakhrutdinov

1976 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
W. R. Webber

In recent years observations of γ-ray emission from the disk of the galaxy have provided a new opportunity for research into the structure of the spiral arms of our own galaxy. In Figure 1 we show a map of the structure of the disk of the galaxy as observed for γ-rays of energy > 100 MeV by the SAS-2 satellite (Fichtel et al. 1975). The angular resolution of these measurements is ~ 3°, and besides two point sources at l = 190° and 265° several features related to the spiral structure of the galaxy are evident in the data. Most of these γ-rays are believed to arise from the decay of π° mesons produced by the nuclear interactions of cosmic rays (mostly protons) with the ambient interstellar gas. As a result, the γ-ray fluxes represent a measure of the line of sight integral of the product of the cosmic ray density NCR and the interstellar matter density N1


Sign in / Sign up

Export Citation Format

Share Document