Monitoring of helium gas leakage from canister storing spent nuclear fuel: Radiological consequences and management

2021 ◽  
Vol 382 ◽  
pp. 111391
Author(s):  
Toshiari Saegusa ◽  
Hirofumi Takeda ◽  
Yung Liu
Author(s):  
Michael F. Keller

The world possess hundreds of years of economical coal reserves that are becoming increasingly unpopular due to climate-change concerns. The ability of renewable energy to supply the planet’s needs is limited. The once bright promise of American nuclear power has dimmed considerably due to the high cost of building new facilities, with the recent events in Japan creating even more uncertainties. Small nuclear reactors are now being proposed, but their limited size creates problematic competitiveness issues. Our energy options for the future are becoming progressively more limited. A completely unexpected solution lies with a hybrid gas turbine designed to cleanly produce large amounts of electrical power using two fuel sources. This recently proposed and unique U.S. technology employs a large combustion (gas) turbine in tandem with a small and efficient helium gas reactor. Relative to conventional methods, the hybrid greatly increases energy production, appreciably reduces costs while dramatically reducing emissions and solid wastes, particularly spent nuclear fuel which is also essentially worthless as bomb material. The commercial potential of the hybrid is unprecedented. The helium gas reactor marriage with the combustion turbine opens the door for the continued use of one of the worlds’ most abundant and low-cost fuel resources, coal. The hybrid-nuclear coal gasification configuration dramatically reduces environmental impacts while also supporting the co-production of all manner of liquid transportation fuels, substitute natural gas, hydrogen, process heat and industrial chemicals. Replacement of the aging fleet of US coal plants with hybrid-nuclear/coal gasification units would dramatically reduce air pollutants and greenhouse gas emissions without resorting to the problematic sequestration (pumping into the ground) of CO2. Further, coal sludge waste and ponds would be eliminated. The unique characteristics of the hybrid also sustain the co-production of stored energy (compressed air) and solar power and move both of these expensive green resources into more competitive positions. The hybrid’s unique operational capabilities readily support the electrical grid, particularly the increasing variability caused by greater use of renewable energy. The use of hybrid-nuclear energy plants would significantly extend the life of the world’s fuel resources, to the benefit of future generations. The hybrid relies on tried-and-proven technologies as well as the large body of knowledge developed over the 50 year history of nuclear reactors and combustion turbines. The unique characteristics of the hybrid overcome the engineering, financial and regulatory obstacles that have long held back the full-scale commercial deployment of the gas reactor. The hybrid technology is considerably safer than current reactors. Melting of the nuclear fuel is not possible, the reactor can not cause explosions or burnup, and radiation releases to the environment are extremely unlikely. No operator actions are necessary to keep the public safe. Hybrid nuclear energy is a fail-safe and evolutionary new direction for nuclear power.


2021 ◽  
Vol 385 ◽  
pp. 111534
Author(s):  
Yung Liu ◽  
Brian Craig ◽  
Zenghu Han ◽  
Jie Li ◽  
Kevin Byrne ◽  
...  

2002 ◽  
Author(s):  
Glenn E. McCreery ◽  
Keith G. Condie ◽  
Randy C. Clarksean ◽  
Donald M. McEligot

2020 ◽  
Vol 2020 (1) ◽  
pp. 67-77
Author(s):  
Nikita Vladimirivich Kovalyov ◽  
Boris Yakovlevich Zilberman ◽  
Nikolay Dmitrievich Goletskiy ◽  
Andrey Borisovich Sinyukhin

ANRI ◽  
2020 ◽  
pp. 45-53
Author(s):  
A. Lachugin ◽  
M. Kocherygin ◽  
A. Gayazov ◽  
Yury Martynyuk ◽  
A. Vasil'ev

The paper presents basic results of development of a criticality accident alarm system to ensure safe retrieval of the spent nuclear fuel from the Lepse Floating Maintenance Base. The key features and engineering aspects of the system design are described. Locations of criticality detector units and selected alarm level settings are justified, hazardous area boundaries were identified, and parameters to identify inadequately protected zones were calculated. The SRKS-01D criticality accident alarm system by SPC “Doza” was selected as base equipment. The system was commissioned in 2019 and has been successfully operated for more than 6 months.


2018 ◽  
Author(s):  
Kaushik Banerjee ◽  
Thomas M. Evans ◽  
Gregory G. Davidson ◽  
Steven P. Hamilton

2020 ◽  
Author(s):  
Benjamin Roach ◽  
Cole Hexel ◽  
Kayron Rogers ◽  
Jeffrey (Jeff) Delashmitt ◽  
Shalina Metzger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document