Alpha decay properties of superheavy nuclei Z = 126

2016 ◽  
Vol 945 ◽  
pp. 42-57 ◽  
Author(s):  
H.C. Manjunatha
2016 ◽  
Vol 25 (09) ◽  
pp. 1650074 ◽  
Author(s):  
H. C. Manjunatha

We have studied the [Formula: see text]-decay properties of superheavy nuclei (SHN) [Formula: see text] in the range [Formula: see text] using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated [Formula: see text] half-lives agree with the values computed using the Viola–Seaborg systematic, the universal curve of Poenaru et al. [Phys. Rev. C 83 (2011) 014601; 85 (2012) 034615] and the analytical formulas of Royer [J. Phys. G[Formula: see text] Nucl. Part. Phys. 26 (2000) 1149]. To identify the mode of decay of these isotopes, the spontaneous-fission half-lives were also evaluated using the semiempirical relation given by Xu et al. [Phys. Rev. C 78 (2008) 044329]. The calculated half-lives help to predict the possible isotopes of this superheavy element [Formula: see text]. As we could observe [Formula: see text] chain consistently from the nuclei [Formula: see text]124, we have predicted that these nuclei could not be synthesized and detected experimentally via [Formula: see text] decay as their decay half-lives are too small. The nuclei [Formula: see text]124 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory.


2016 ◽  
Vol 951 ◽  
pp. 60-74 ◽  
Author(s):  
A.I. Budaca ◽  
R. Budaca ◽  
I. Silisteanu

2018 ◽  
Author(s):  
U. K. Singh ◽  
M. Kumawat ◽  
G. Saxena ◽  
M. Kaushik ◽  
S. K. Jain

2016 ◽  
Vol 52 (12) ◽  
Author(s):  
Asloob A. Rather ◽  
M. Ikram ◽  
A. A. Usmani ◽  
Bharat Kumar ◽  
S. K. Patra

2020 ◽  
Vol 29 (10) ◽  
pp. 2050087
Author(s):  
N. Sowmya ◽  
H. C. Manjunatha ◽  
P. S. Damodara Gupta

In this work, we have made an attempt to study the cluster-decay half-lives and alpha-decay half-lives of the superheavy nuclei [Formula: see text]Og by considering the temperature-dependent (TD) and also temperature-independent (TID) proximity potential model. The evaluated half-lives were compared with that of the experiments. To predict the decay modes, we have compared the cluster-decay half-lives and alpha-decay half-lives with that of spontaneous fission half-lives. This work also predicts the decay chains of the superheavy nuclei [Formula: see text]Og and finds an importance in the synthesis of further isotopes of superheavy element Oganesson.


Sign in / Sign up

Export Citation Format

Share Document