liquid drop
Recently Published Documents


TOTAL DOCUMENTS

987
(FIVE YEARS 114)

H-INDEX

62
(FIVE YEARS 4)

2021 ◽  
Author(s):  
De-Xing Zhu ◽  
Hong-Ming Liu ◽  
Yang-Yang Xu ◽  
You-Tian Zou ◽  
Xi-Jun Wu ◽  
...  

Abstract In the present work, considering the preformation probability of the emitted two protons in the parent nucleus, we extend the Coulomb and proximity potential model (CPPM) to systematically study two-proton (2p) radioactivity half-lives of the nuclei close to proton drip line, while the proximity potential is chosen as Prox.81 proposed by Blocki et al. in 1981. Furthermore, we apply this model to predict the half-lives of possible 2p radioactive candidates whose 2p radioactivity is energetically allowed or observed but not yet quantified in the evaluated nuclear properties table NUBASE2016. The predicted results are in good agreement with those from other theoretical models and empirical formulas, namely the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), Gamow-like model, Sreeja formula and Liu formula.


2021 ◽  
pp. 004051752110661
Author(s):  
Yong Wang ◽  
Qifan Qiao ◽  
Zongqian Wang ◽  
Changlong Li ◽  
Stuart Gordon

The ability of a fabric to wick moisture away from the human body directly determines the moisture management ability of any given textile, and thereby has a great influence on the comfort offered by garments made from that textile. In this paper, the effects of tensile extension and liquid drop height on the transverse wicking behavior of a warp stretch woven fabric were systematically investigated. By virtue of the unique structure of the nylon/spandex air-covered warp yarn, the woven fabric has a denser and tighter surface, which facilitates its warp elastic stretchability beyond 60%. Furthermore, an acceptable cyclic tensile behavior at an extension of 30% was obtained, indicating the superior mechanical robustness of the fabric to a certain extent. The experimental results demonstrated that the transverse wicking performances of the fabric, including the wetting time and liquid spreading area, were dependent on the tensile extensions and the heights between the water droplet and the fabric surface. Specifically, the wetting time increased with an increase of tensile extension or a decrease of liquid drop height. The spreading area of the water droplet increases as a function of the wicking time, and it fits a power relation appropriately. In addition, the water vapor transmission behavior of our fabric during stretch was clarified. Such work is essential to get an in-depth evaluation of the wicking behavior of complex stretchable fabric structures.


Author(s):  
Xiao Chongyang ◽  
Fu Heng ◽  
Cheng Leli ◽  
Pei Wenyu

AbstractAfter more than 20 years of continuous development, part of the wells in the Moxilei-1 gas reservoir located at the Sichuan Basin have entered the middle–later production stage. With the continuous decline in formation pressure and production rates, some of the gas wells have entered the potential period of liquid loading, while some have already suffered water plugging. Currently, the field engineers usually carry out some corresponding drainage measures after the occurrence of liquid loading in the gas well, which will first affect the production progress of the gas field, then increase the difficulty in drainage and reduce the drainage effect afterward. On the basis of Pan’s model for evaluating critical liquid-carrying flow rate, the influence of liquid drop rotation was considered in the new model. Further, combined with the Arps production decline equation, a prediction model of liquid loading timing was deduced. Taking a typical well in the Moxilei-1 gas reservoir as an example, based on the early-stage production data of the gas well, the model was used to predict the liquid loading timing accurately. The model can predict the possibility and timing of liquid loading in gas wells at different production stages. It can check the gas wells with potential liquid loading, so as to reduce the workload for field workers. Furthermore, it can predict the potential liquid accumulation and its timing in advance, so as to guide the field workers to prepare for drainage in advance.


Author(s):  
G. R. Sridhara ◽  
H. C. Manjunatha ◽  
N. Sowmya ◽  
P. S. Damodara Gupta

In this paper, we have made an attempt to analyze the alpha-decay half-lives of in the atomic number range [Formula: see text] by considering an effective liquid drop model. The role of pre-formation probability by including iso-spin effect is included during an evaluation of half-lives. We have also compared the studied alpha-decay half-lives with that of semi-empirical formulae such as Viola Seaborg semi-empirical formulae (VSS) [J. Inorg. Nucl. Chem. 28 (1966) 741; Nucl. Phys. A 848 (2010) 279], Royer formulae [J. Phys. G: Nucl. Part. Phys. 26 (2000) 1149; Phys. Rev. C 101 (2020) 034307] and also with that of the available experiments. From this comparison, it can be concluded that the effective liquid drop model produces an alpha-decay half-lives close to the experiments.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012004
Author(s):  
N A Zemlyakov ◽  
A I Chugunov ◽  
N N Shchechilin

Abstract Neutron stars are superdense compact astrophysical objects. The central region of the neuron star (the core) consists of locally homogeneous nuclear matter, while in the outer region (the crust) nucleons are clustered. In the outer crust these nuclear clusters represent neutron-rich atomic nuclei and all nucleons are bound within them. Whereas in the inner crust some neutrons are unbound, but nuclear clusters still keeps generally spherical shape. Here we consider the region between the crust and the core of the star, so-called mantle, where non-spherical nuclear clusters may exist. We apply compressible liquid drop model to calculate the energy density for several shape types of nuclear clusters. It allows us to identify the most energetically favorable configuration as function of baryon number density. Employing four Skyrme-type forces (SLy4 and BSk24, BSk25, BSk26), which are widely used in the neutron star physics, we faced with strong model dependence of the ground state composition. In particular, in agreement with previous works within liquid drop model, mantle is absent for SLy4 (nuclear spheres directly transit into homogeneous nuclear matter; exotic nuclear shapes do not appear).


2021 ◽  
Author(s):  
Nataliya Khodosova ◽  
A. Dmitrenkov ◽  
V. Zayats

The study of the surface tension of wood of various tree species impregnated with used sunflower oil was carried out. Samples of birch, pine and linden wood were used for oil treatment. Impregnation of wood materials was carried out by the method of “hot-cold baths”. As an impregnating material, used refined fryer oil was used. In more detail, the paper examines the effect of an impregnating composition based on used fryer oil, with a filler and a desiccant on birch wood. Wood flour of coniferous wood species and a metal salt-based drier were used as a filler. The surface tension for all images was determined by the edge angle of wetting. For this purpose, the method of a liquid drop on the surface of a solid body was used. It was found that the impregnation of untreated wood with deep-frying oil leads to an increase in the surface tension on all samples, to a greater extent this is typical for pine wood. The introduction of a 1% siccative in the impregnating composition together with wood flour reduces the drying time and improves the water-repellent properties of birch wood.


Sign in / Sign up

Export Citation Format

Share Document