scholarly journals Bargmann invariants, geometric phases and recursive parametrization with Majorana fermions

2021 ◽  
Vol 964 ◽  
pp. 115315
Author(s):  
Rohan Pramanick ◽  
Swarup Sangiri ◽  
Utpal Sarkar
2018 ◽  
Vol 4 (10) ◽  
pp. eaat6533 ◽  
Author(s):  
Jin-Shi Xu ◽  
Kai Sun ◽  
Jiannis K. Pachos ◽  
Yong-Jian Han ◽  
Chuan-Feng Li ◽  
...  

Geometric phases, generated by cyclic evolutions of quantum systems, offer an inspiring playground for advancing fundamental physics and technologies alike. The exotic statistics of anyons realized in physical systems can be interpreted as a topological version of geometric phases. However, non-Abelian statistics has not yet been demonstrated in the laboratory. Here, we use an all-optical quantum system that simulates the statistical evolution of Majorana fermions. As a result, we experimentally realize non-Abelian Berry phases with the topological characteristic that they are invariant under continuous deformations of their control parameters. We implement a universal set of Majorana-inspired gates by performing topological and nontopological evolutions and investigate their resilience against perturbative errors. Our photonic experiment, though not scalable, suggests the intriguing possibility of experimentally simulating Majorana statistics with scalable technologies.


2004 ◽  
Vol 174 (3) ◽  
pp. 303 ◽  
Author(s):  
Grigorii B. Malykin ◽  
Vera I. Pozdnyakova

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Matthew DeCross ◽  
Arjun Kar ◽  
Yue Li ◽  
Onkar Parrikar

Abstract We use the SYK family of models with N Majorana fermions to study the complexity of time evolution, formulated as the shortest geodesic length on the unitary group manifold between the identity and the time evolution operator, in free, integrable, and chaotic systems. Initially, the shortest geodesic follows the time evolution trajectory, and hence complexity grows linearly in time. We study how this linear growth is eventually truncated by the appearance and accumulation of conjugate points, which signal the presence of shorter geodesics intersecting the time evolution trajectory. By explicitly locating such “shortcuts” through analytical and numerical methods, we demonstrate that: (a) in the free theory, time evolution encounters conjugate points at a polynomial time; consequently complexity growth truncates at O($$ \sqrt{N} $$ N ), and we find an explicit operator which “fast-forwards” the free N-fermion time evolution with this complexity, (b) in a class of interacting integrable theories, the complexity is upper bounded by O(poly(N)), and (c) in chaotic theories, we argue that conjugate points do not occur until exponential times O(eN), after which it becomes possible to find infinitesimally nearby geodesics which approximate the time evolution operator. Finally, we explore the notion of eigenstate complexity in free, integrable, and chaotic models.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yiyang Jia ◽  
Jacobus J. M. Verbaarschot

Abstract We analyze the spectral properties of a d-dimensional HyperCubic (HC) lattice model originally introduced by Parisi. The U(1) gauge links of this model give rise to a magnetic flux of constant magnitude ϕ but random orientation through the faces of the hypercube. The HC model, which also can be written as a model of 2d interacting Majorana fermions, has a spectral flow that is reminiscent of Maldacena-Qi (MQ) model, and its spectrum at ϕ = 0, actually coincides with the coupling term of the MQ model. As was already shown by Parisi, at leading order in 1/d, the spectral density of this model is given by the density function of the Q-Hermite polynomials, which is also the spectral density of the double-scaled Sachdev-Ye-Kitaev model. Parisi demonstrated this by mapping the moments of the HC model to Q-weighted sums on chord diagrams. We point out that the subleading moments of the HC model can also be mapped to weighted sums on chord diagrams, in a manner that descends from the leading moments. The HC model has a magnetic inversion symmetry that depends on both the magnitude and the orientation of the magnetic flux through the faces of the hypercube. The spectrum for fixed quantum number of this symmetry exhibits a transition from regular spectra at ϕ = 0 to chaotic spectra with spectral statistics given by the Gaussian Unitary Ensembles (GUE) for larger values of ϕ. For small magnetic flux, the ground state is gapped and is close to a Thermofield Double (TFD) state.


Sign in / Sign up

Export Citation Format

Share Document