quantum systems
Recently Published Documents


TOTAL DOCUMENTS

5476
(FIVE YEARS 1150)

H-INDEX

125
(FIVE YEARS 18)

10.1142/9740 ◽  
2023 ◽  
Author(s):  
Trond Digernes ◽  
Erik Makino Bakken

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergey Danilin ◽  
João Barbosa ◽  
Michael Farage ◽  
Zimo Zhao ◽  
Xiaobang Shang ◽  
...  

AbstractElectromagnetic filtering is essential for the coherent control, operation and readout of superconducting quantum circuits at milliKelvin temperatures. The suppression of spurious modes around transition frequencies of a few GHz is well understood and mainly achieved by on-chip and package considerations. Noise photons of higher frequencies – beyond the pair-breaking energies – cause decoherence and require spectral engineering before reaching the packaged quantum chip. The external wires that pass into the refrigerator and go down to the quantum circuit provide a direct path for these photons. This article contains quantitative analysis and experimental data for the noise photon flux through coaxial, filtered wiring. The attenuation of the coaxial cable at room temperature and the noise photon flux estimates for typical wiring configurations are provided. Compact cryogenic microwave low-pass filters with CR-110 and Esorb-230 absorptive dielectric fillings are presented along with experimental data at room and cryogenic temperatures up to 70 GHz. Filter cut-off frequencies between 1 to 10 GHz are set by the filter length, and the roll-off is material dependent. The relative dielectric permittivity and magnetic permeability for the Esorb-230 material in the pair-breaking frequency range of 75 to 110 GHz are measured, and the filter properties in this frequency range are calculated. The estimated dramatic suppression of the noise photon flux due to the filter proves its usefulness for experiments with superconducting quantum systems.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Giacomo De Palma ◽  
Lucas Hackl

We prove that the entanglement entropy of any pure initial state of a bipartite bosonic quantum system grows linearly in time with respect to the dynamics induced by any unstable quadratic Hamiltonian. The growth rate does not depend on the initial state and is equal to the sum of certain Lyapunov exponents of the corresponding classical dynamics. This paper generalizes the findings of [Bianchi et al., JHEP 2018, 25 (2018)], which proves the same result in the special case of Gaussian initial states. Our proof is based on a recent generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum systems [De Palma et al., arXiv:2105.05627]. This technique allows us to extend our result to generic mixed initial states, with the squashed entanglement providing the right generalization of the entanglement entropy. We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems, including certain quantum field theory models.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Raffaele Salvia ◽  
Vittorio Giovannetti
Keyword(s):  

Author(s):  
Peter Hu ◽  
Yangqiuting Li ◽  
Chandralekha Singh

Abstract Research-validated clicker questions as instructional tools for formative assessment are relatively easy to implement and can provide effective scaffolding when developed and implemented in a sequence. We present findings from the implementation of a research-validated Clicker Question Sequence (CQS) on student understanding of the time-development of two-state quantum systems. This study was conducted in an advanced undergraduate quantum mechanics course for two consecutive years in virtual and in-person classes. The effectiveness of the CQS discussed here in both modes of instruction was determined by evaluating students’ performance after traditional lecture-based instruction and comparing it to their performance after engaging with the CQS.


2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Philipp Kunkel ◽  
Maximilian Prüfer ◽  
Stefan Lannig ◽  
Robin Strohmaier ◽  
Martin Gärttner ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zelong Yin ◽  
Chunzhen Li ◽  
Jonathan Allcock ◽  
Yicong Zheng ◽  
Xiu Gu ◽  
...  

AbstractShortcuts to adiabaticity are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various shortcuts to adiabaticity protocols have been demonstrated in closed systems. However, realizing shortcuts to adiabaticity for open quantum systems has presented a challenge due to the complex controls in existing proposals. Here, we present the experimental demonstration of shortcuts to adiabaticity for open quantum systems, using a superconducting circuit quantum electrodynamics system. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for precise time-domain control of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Thiago Werlang ◽  
Maurício Matos ◽  
Frederico Brito ◽  
Daniel Valente

AbstractA longstanding challenge in nonequilibrium thermodynamics is to predict the emergence of self-organized behaviors and functionalities typical of living matter. Despite the progress with classical complex systems, it remains far from obvious how to extrapolate these results down to the quantum scale. Here, we employ the paradigmatic master equation framework to establish that some lifelike behaviors and functionalities can indeed emerge in elementary dissipative quantum systems driven out of equilibrium. Specifically, we find both energy-avoiding (low steady dissipation) and energy-seeking behaviors (high steady dissipation), as well as self-adaptive shifts between these modes, in generic few-level systems. We also find emergent functionalities, namely, a self-organized thermal gradient in the system’s environment (in the energy-seeking mode) and an active equilibration against thermal gradients (in the energy-avoiding mode). Finally, we discuss the possibility that our results could be related to the concept of dissipative adaptation.


Sign in / Sign up

Export Citation Format

Share Document