scholarly journals Identifying the Huse-Fisher universality class of the three-state chiral Potts model

2021 ◽  
Vol 965 ◽  
pp. 115365 ◽  
Author(s):  
Samuel Nyckees ◽  
Jeanne Colbois ◽  
Frédéric Mila
1994 ◽  
Vol 08 (25n26) ◽  
pp. 3601-3621 ◽  
Author(s):  
RINAT KEDEM ◽  
BARRY M. McCOY

We study the quasi-particle spectrum of the integrable three-state chiral Potts chain in the massive phase by combining a numerical study of the zeros of associated transfer matrix eigenvalues with the exact results of the ferromagnetic three-state Potts chain and the three-state superintegrable chiral Potts model. We find that the spectrum is described in terms of quasi-particles with momenta restricted only to segments of the Brillouin zone 0≤P≤2π where the boundaries of the segments depend on the chiral angles of the model.


1983 ◽  
Vol 61 (11) ◽  
pp. 1515-1527 ◽  
Author(s):  
James Glosli ◽  
Michael Plischke

The Ising model with nearest and next nearest neighbor antiferromagnetic interactions on the triangular lattice displays, for Jnnn/Jnn = 0.1, three phase transitions in different universality classes as the magnetic field is increased. We have studied this model using Monte Carlo and renormalization group techniques. The transition from the paramagnetic to the 2 × 1 phase (universality class of the Heisenberg model with cubic anisotropy) is found to be first order; the transition from the paramagnetic phase to the [Formula: see text] phase (universality class of the three state Potts model) is continuous; and the transition from the paramagnetic to the 2 × 2 phase (universality class of the four state Potts model) is found to change from first order to continuous as the field is increased. We have mapped out the phase diagram and determined the critical exponents for the continuous transitions. A novel technique, using a Landau-like free energy functional determined from Monte Carlo calculations, to distinguish between first order and continuous transitions, is described.


1991 ◽  
Vol 362 (3) ◽  
pp. 563-582 ◽  
Author(s):  
R.M. Kashaev ◽  
V.V. Mangazeev ◽  
T. Nakanishi

Sign in / Sign up

Export Citation Format

Share Document