Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle

2012 ◽  
Vol 48 ◽  
pp. 70-87 ◽  
Author(s):  
Jun Tan ◽  
Junhao Wei ◽  
Andreas Audétat ◽  
Thomas Pettke
2012 ◽  
Vol 107 (1) ◽  
pp. 43-79 ◽  
Author(s):  
J.-W. Li ◽  
Z.-K. Li ◽  
M.-F. Zhou ◽  
L. Chen ◽  
S.-J. Bi ◽  
...  

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
YaYun Liang ◽  
Wenhui Guo ◽  
Yao Ma ◽  
Enquan Zhao

Abstract The eastern North China Craton (NCC) has been recognised as undergoing cratonic destruction during the Mesozoic; however, the mechanism of its destruction is still unclear. The main difference between the proposed models is whether the lower continental crust (LCC) underwent thinning. In this study, we conducted comprehensive analyses of Late Mesozoic felsic intrusive rocks, including Late Jurassic granites (166–146 Ma), Early Cretaceous granodiorites (136–123 Ma), and latest Early Cretaceous granites (123–108 Ma) from the Jiaodong Peninsula, located on the southeastern margin of the NCC. These rocks allowed us to investigate variations in the LCC thickness in this region and to further discuss the destruction mechanism of the eastern NCC. Here, temporal variations in crustal thickness can be tracked using whole-rock La/Yb ratios of the felsic intrusive rocks. Our study shows that the continental crust in the eastern NCC thickened during the Late Jurassic (>40 km) due to compression and the westward subduction of the Palaeo-Pacific Ocean lithosphere beneath the NCC since the Early Jurassic. The continental crust further thickened during the Early Cretaceous, caused by the steepening of the subducting slab after ~144 Ma that produced crustal underplating of mantle-derived melts in an extensional setting. However, the continental crust thinned (20–40 km) during the latest Early Cretaceous, caused by the rollback of the subducting slab after ~123 Ma. The geochemical compositions of three stages of felsic intrusions also suggest that the regional tectonic stress that affects the eastern NCC altered from a compressional to an intraplate extensional environment after ~144 Ma. Thus, the Late Mesozoic destruction of the eastern NCC and its accompanying magmatism were controlled by prolonged thermomechanical-chemical erosion due to low-angle subduction, steepening, and rollback of the Palaeo-Pacific Oceanic lithosphere.


Lithos ◽  
2015 ◽  
Vol 227 ◽  
pp. 77-93 ◽  
Author(s):  
Chong-Jin Pang ◽  
Xuan-Ce Wang ◽  
Yi-Gang Xu ◽  
Shu-Nv Wen ◽  
Yong-Sheng Kuang ◽  
...  

Lithos ◽  
2014 ◽  
Vol 190-191 ◽  
pp. 52-70 ◽  
Author(s):  
Huayun Tang ◽  
Jianping Zheng ◽  
Chunmei Yu ◽  
Xianquan Ping ◽  
Hongwei Ren

2020 ◽  
Vol 132 (11-12) ◽  
pp. 2353-2366
Author(s):  
Yao Xu ◽  
Hongfu Zhang

Abstract Abundant zoned olivine xenocrysts from Early Cretaceous basalts of the Yixian Formation in western Liaoning Province, China, contain critical information about the nature and evolution of the lithospheric mantle of the northern North China Craton. These olivine xenocrysts are large (600–1600 µm), usually rounded and embayed, with well-developed cracks. Their cores have high and uniform forsterite (Fo) contents (88–91), similar to the peridotitic olivine entrained by regional Cenozoic basalts. Their rims have much lower Fo contents (74–82), comparable to phenocrysts (72–81) in the host basalts. These characteristics reveal that the zoned olivine has been disaggregated from mantle xenoliths and thus can be used to trace the underlying lithospheric mantle at the time of basaltic magmatism. The olivine cores have high oxygen isotope compositions (δ18OSMOW = 5.9–7.0‰) relative to the normal mantle value, suggesting that the Early Cretaceous lithospheric mantle was enriched and metasomatized mainly by melts/fluids released from subducted oceanic crust that had experienced low-temperature hydrothermal alteration. Preservation of zoned olivine xenocrysts in the Early Cretaceous basalts indicates that olivine-melt/fluid reaction could have been prevalent in the lithospheric mantle as an important mechanism for the transformation from old refractory (high-Mg) peridotitic mantle to young, fertile (low-Mg), and enriched lithospheric mantle during the early Mesozoic.


Lithos ◽  
2020 ◽  
Vol 360-361 ◽  
pp. 105412
Author(s):  
Zi-Zhen Wang ◽  
Jia Liu ◽  
Qun-Ke Xia ◽  
Yan-Tao Hao ◽  
Qin-Yan Wang

Sign in / Sign up

Export Citation Format

Share Document