liaoning province
Recently Published Documents


TOTAL DOCUMENTS

1207
(FIVE YEARS 408)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Enbin Yang ◽  
Hao Zhang ◽  
Xinsheng Guo ◽  
Zinan Zang ◽  
Zhen Liu ◽  
...  

Abstract Background: In addition to COVID-19, tuberculosis (TB) is the respiratory infectious disease with the highest incidence in China. We aim to design a series of forecasting models and find the factors that affect the incidence of TB, thereby improving the accuracy of the incidence prediction. Results: In this paper, we developed a new interpretable prediction system based on the multivariate multi-step Long Short-Term Memory (LSTM) model and SHapley Additive exPlanation (SHAP) method. Moreover, four accuracy measures are introduced into the system: Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, and symmetric Mean Absolute Percentage Error. Meanwhile, the Autoregressive Integrated Moving Average (ARIMA) model and seasonal ARIMA model are established. The multi-step ARIMA-LSTM model is proposed for the first time to examine the performance of each model in the short, medium, and long term, respectively. Compared with the ARIMA model, each error of the multivariate 2-step LSTM model is reduced by 12.92%, 15.94%, 15.97%, and 14.81% in the short term. The 3-step ARIMA-LSTM model achieved excellent performance, with each error decreased to 15.19%, 33.14%, 36.79%, and 29.76% in the medium and long term. We provide the local and global explanation of the multivariate single-step LSTM model in the field of incidence prediction, pioneering. Conclusions: The multivariate 2-step LSTM model is suitable for short-term forecasts, and the 3-step ARIMA-LSTM model is appropriate for medium and long-term forecasts. In addition, the prediction effect was better than similar TB incidence forecasting models. The SHAP results indicate that the five most crucial features are maximum temperature, average relative humidity, local financial budget, monthly sunshine percentage, and sunshine hours.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Mengying Cui ◽  
Yonghua Sun ◽  
Chen Huang ◽  
Mengjun Li

The water components affecting turbidity are complex and changeable, and the spectral response mechanism of each water quality parameter is different. Therefore, this study mainly aimed at the turbidity monitoring by unmanned aerial vehicle (UAV) hyperspectral technology, and establishes a set of turbidity retrieval models through the artificial control experiment, and verifies the model’s accuracy through UAV flight and water sample data in the same period. The results of this experiment can also be extended to different inland waters for turbidity retrieval. Retrieval of turbidity values of small inland water bodies can provide support for the study of the degree of water pollution. We collected the images and data of aquaculture ponds and irrigation ditches in Dawa District, Panjin City, Liaoning Province. Twenty-nine standard turbidity solutions with different concentration gradients (concentration from 0 to 360 NTU—the abbreviation of Nephelometric Turbidity Unit, which stands for scattered turbidity.) were established through manual control and we simultaneously collected hyperspectral data from the spectral values of standard solutions. The sensitive band to turbidity was obtained after analyzing the spectral information. We established four kinds of retrieval, including the single band, band ratio, normalized ratio, and the partial least squares (PLS) models. We selected the two models with the highest R2 for accuracy verification. The band ratio model and PLS model had the highest accuracy, and R2 was, respectively, 0.65 and 0.72. The hyperspectral image data obtained by UAV were combined with the PLS model, which had the highest R2 to estimate the spatial distribution of water turbidity. The turbidity of the water areas in the study area was 5–300 NTU, and most of which are 5–80 NTU. It shows that the PLS models can retrieve the turbidity with high accuracy of aquaculture ponds, irrigation canals, and reservoirs in Dawa District of Panjin City, Liaoning Province. The experimental results are consistent with the conclusions of the field investigation.


Author(s):  
Ziming Song ◽  
Yingyue Sun ◽  
Peng Chen ◽  
Mingming Jia

Suaeda salsa (S. salsa) is an important ecological barrier and tourism resource in coastal wetland resources, and assessing changes in its health is beneficial for protecting the ecological health of wetlands and increasing finances. The aim was to explore improvements in the degradation of S. salsa communities in the Liao River Estuary National Nature Reserve since a wetland restoration project was carried out in Panjin, Liaoning Province, China, in 2015. In this study, landscape changes in the reserve were assessed based on Sentinel-2 images classification results from 2016 to 2019. A pressure-state-response framework was constructed to assess the annual degradation of S. salsa communities within the wetlands. The assessment results show that the area of S. salsa communities and water bodies decreased annually from 2016 to 2019, and the increased degradation indicators indicate a state of continued degradation. The area of types such as aquaculture ponds and Phragmites australis communities did not change much, while the estuarine mudflats increased year by year. The causes of S. salsa community degradation include anthropogenic impacts from abandoned aquaculture ponds and sluice control systems but also natural impacts from changes in the tidal amplitude and soil properties of the mudflats. The results also indicate that the living conditions of S. salsa in the Liao River estuary wetlands are poor and that anthropogenic disturbance is necessary to restore the original vegetation abundance.


2022 ◽  
Vol 14 (1) ◽  
pp. 449
Author(s):  
Jie Huang ◽  
Xiaolu Huang ◽  
Nanqi Song ◽  
Yu Ma ◽  
Dan Wei

Actively promoting the development of offshore wind power is an inevitable choice if the People’s Republic of China plans to fulfill its international commitments, respond to climate change, ensure energy security, and improve energy infrastructure. Inevitably, offshore wind power development will conflict with other marine activities, including mariculture and shipping. Therefore, learning how to develop offshore wind power without affecting the environment or conflicting with other marine activities is crucial to the conservation of spatial marine resources. The rapid development of offshore wind power in Liaoning Province has allowed researchers to develop an index system that can be used to evaluate the suitability of offshore wind power development sites by considering costs, environmental protection, and sea management. Spatial analysis and a multi-attribute evaluation method integrating a fuzzy membership function were used to evaluate offshore wind farm placement in Liaoning. The results classified 5%, 18%, 21%, and 56% offshore areas of Liaoning as very suitable, relatively suitable, somewhat unsuitable, and unsuitable for wind power development, respectively. The results of this paper can provide a reference for decision makers who plan for offshore wind farm locations under the constraints of high-intensity development.


2021 ◽  
Vol 14 (1) ◽  
pp. 138
Author(s):  
Hongyan Yin ◽  
Yuanman Hu ◽  
Miao Liu ◽  
Chunlin Li ◽  
Yu Chang

Suaeda salsa (L.) Pall. (S. salsa) acts as a pioneer species in coastal wetlands due to its high salt tolerance. It has significant biodiversity maintenance, socioeconomic values (e.g., tourism) due to its vibrant color, and carbon sequestration (blue carbon). Bohai bay region, the mainly distributed area of S. salsa, is an economic intensive region with the largest economic aggregate and population in northern China. The coastal wetland is one of the most vulnerable ecosystems with the urbanization and economic developments. S. salsa in Bohai Bay has been changed significantly due to several threats to its habitat in past decades. In this paper, we analyzed all available archived Landsat TM/ETM+/OLI images of the Bohai Bay region by using a decision tree algorithm method based on the Google Earth Engine (GEE) platform to generate annual maps of S. salsa from 1990 to 2020 at a 30-m spatial resolution. The temporal-spatial dynamic changes in S. salsa were studied by landscape metric analysis. The influencing factors of S. salsa changes were analyzed based on principal component analysis (PCA) and a logistic regression model (LRM). The results showed that S. salsa was mainly distributed in three regions: the Liao River Delta (Liaoning Province), Yellow River Delta (Shandong Province), and Hai River Estuary (Hebei Province, Tianjin). During the past 31 years, the total area of S. salsa has dramatically decreased from 692.93 km2 to 51.04 km2, which means that 92.63% of the area of S. salsa in the Bohai Bay region was lost. In the 641.89 km2 area of S. salsa that was lost, 348.80 km2 of this area was converted to other anthropic land use categories, while 293.09 km2 was degraded to bare land. The landscape fragmentation of S. salsa has gradually intensified since 1990. National Nature Reserves have played an important role in the restoration of suitable S. salsa habitats. The analysis results for the natural influencing factors indicated that precipitation, temperature, elevation, and distance to the coastline were considered to be the major influencing factors for S. salsa changes. The results are valuable for monitoring the dynamic changes of S. salsa and can be used as effective factors for the restoration of S. salsa in coastal wetlands.


Author(s):  
Xiaoqin Guo ◽  
Zhuochen Li ◽  
Tiantian Lv ◽  
Haixu Cao ◽  
Xin Du ◽  
...  

To understand the epidemiological status of parvovirus (RDPV) in raccoon dogs, intestinal tissues of raccoon dogs in Liaoning Province of China were collected and evaluated. Three strains of raccoon dog parvovirus were successfully isolated from 12 intestinal tissues. Nine samples were positive for RDPV, with a positive rate of 75%. The VP2 and NS1 genes of the viruses were cloned and subjected to sequencing for analysis. The nucleotide sequences of the VP2 gene showed 99.94% similarity to the CPV-2a/Racoon dog/QHD/2/19(MT183665) strain, and the nucleotide sequences of the NS1 gene showed 99.75% similarity to RDPV-DP1 NS1(MF996335) strain. The three isolates belonging to the CPV-2a cluster were further confirmed by amino acid sequence alignment and phylogenetic analysis. Our study enriched the epidemiological data of parvovirus in raccoon dogs in the investigating region, and the results will be helpful for future investigation of the variations and transmission of raccoon dog parvoviruses.


2021 ◽  
Vol 13 (24) ◽  
pp. 5168
Author(s):  
Baodong Ma ◽  
Xiangru Yang ◽  
Yajiao Yu ◽  
Yang Shu ◽  
Defu Che

Mining can provide necessary mineral resources for humans. However, mining activities may cause damage to the surrounding ecology and environment. Vegetation change analysis is a key tool for evaluating damage to ecology and the environment. Liaoning is one of the major mining provinces in China, with rich mineral resources and long-term, high-intensity mining activities. Taking Liaoning Province as an example, vegetation change in six mining areas was investigated using multisource remote sensing data to evaluate ecological and environmental changes. Based on MODIS NDVI series data from 2000 to 2019, change trends of vegetation were evaluated using linear regression. According to the results, there are large highly degraded vegetation areas in the Anshan, Benxi, and Yingkou mining areas, which indicates that mining activities have seriously damaged the vegetation in these areas. In contrast, there are considerable areas with improved vegetation in the Anshan, Fushun, and Fuxin mining areas, which indicates that ecological reclamation has played a positive role in these areas. Based on Sentinel-2A data, leaf chlorophyll content was inferred by using the vegetation index MERIS Terrestrial Chlorophyll Index (MTCI) after measurement of leaf spectra and chlorophyll content were carried out on the ground to validate the performance of MTCI. According to the results, the leaf chlorophyll content in the mines is generally lower than in adjacent areas in these mining areas with individual differences. In the Yingkou mining area, the chlorophyll content in adjacent areas is close to the magnesite mines, which means the spillover effect of environmental pollution in mines should be considerable. In the Anshan, Benxi, and Diaobingshan mining areas, the environmental stress on adjacent areas is slight. All in all, iron and magnesite open-pit mines should be monitored closely for vegetation destruction and stress due to the high intensity of mining activities and serious pollution. In contrast, the disturbance to vegetation is limited in resource-exhausted open-pit coal mines and underground coal mines. It is suggested that land reclamation should be enhanced to improve the vegetation in active open-pit mining areas, such as the Anshan, Benxi, and Yingkou mining areas. Additionally, environmental protection measures should be enhanced to relieve vegetation stress in the Yingkou mining area.


Plant Disease ◽  
2021 ◽  
Author(s):  
Baoyu Shen ◽  
Wensong Sun ◽  
Kun Liu ◽  
Jing Tian Zhang

Wuweizi [Schisandra chinensis(Turcz.)Baill.] is used for traditional medicine in northeastern China. In August of 2019, root rot of S. chinensis with an incidence of 30%-50% was observed in a commercial field located in Liaozhong city (41º29’57” N, 122º52’33” E) in the Liaoning province of China. The diseased plants were less vigorous, stunted, and had leaves that turned yellow to brown. Eventually, the whole plant wilted and died. The diseased roots were poorly developed with brown lesion and eventually they would rot. To determine the causal agent, symptomatic roots were collected, small pieces of root with typical lesions were surface sterilized in 2% NaOCl for 3 min, rinsed three times in distilled water, and then plated onto PDA medium. After incubation at 26°C for 5 days, whitish-pink or carmine to rose red colonies on PDA were transferred to carnation leaf agar (CLA). Single spores were isolated with an inoculation needle using a stereomicroscope. Five single conidia isolates obtained from the colonies were incubated at 26°C for 7 days, abundant macroconidia were formed in sporodochia. Macroconidia were falcate, slender, with a distinct curve to the latter half of the apical cell, mostly 3 to 5 septate, measuring 31.3 to 47.8 × 4.8 to 7.5µm (n=50). Microconidia were oval and irregular ovals, 0-1 septate, measuring 5.0 to 17.5 × 2.5 to 17.5µm (n=50). Chlamydospores formed in chains on within or on top of the mycelium. Morphological characteristics of the isolates were in agreement with Fusarium acuminatum (Leslie and Summerell, 2006). To confirm the identity, the partial sequence of the translation elongation factor 1 alpha (TEF1-á) gene of five isolates was amplified using the primers EF-1(ATGGGTAAGGARGACAAG) and EF-2 (GGARGTACCAGTSATCATGTT) (O’Donnell et al. 2015 ) and sequenced. The rDNA internal transcribed spacer (ITS) region for the five isolates was also amplified using the primers ITS1 (TCCGTAGGTGAACCTGCGG) and ITS4 (TCCTCCGCTATTGATATGC) (White et al.1990) and sequenced. The identical sequences were obtained, and one representative sequence of isolate WW31-5 was submitted to GenBank. BLASTn analysis of the TEF-á sequence (MW423624) and ITS sequence (MZ145386), revealed 100%(708/685bp, 563/563bp)sequence identity to F. acuminatum MH595498 and MW560481, respectively. Pathogenicity tests were conducted in greenhouse. Inoculums of F. acuminatum was prepared from the culture of WW31-5 incubated in 2% mung beans juice on a shaker (140 rpm) at 26°C for 5 days. Ten roots of 2-years old plants of S. chinensis were immersed in the conidial suspension (2 × 105 conidia/ml) for 6 hours, and another ten roots immersed in sterilized distilled water in plastic bucket for 6 hours. All these plants were planted into pots with sterilized field soil (two plants per pot). Five pots planted with inoculated plants and another five pots planted with uninoculated plants served as controls. All ten pots were maintained in a greenhouse at 22-26°C for 21 days and irrigated with sterilized water. The leaves of the inoculated plants became yellow,gradually dried up, eventually finally all the aboveground parts died. The roots of the inoculated plants were rotted. Non-inoculated control plants had no symptoms. F. acuminatum was reisolated from the roots of inoculated plants and had morphology identical to the original isolate. The experiment was repeated twice with similar results. F. acuminatum has been reported as a pathogen caused root rot of ginseng (Wang et al. 2016) and not reported on Wuweizi in China. To our knowledge, this is the first report of root rot of S. chinensis caused by F. acuminatum. We have also observed the disease at Benxi city of Liaoning Province in 2020 and it has become an important disease in production of S. chinensis and the effective control method should be adopted to reduce losses.


Sign in / Sign up

Export Citation Format

Share Document