On the relation between discriminant analysis and mutual information for supervised linear feature extraction

2004 ◽  
Vol 37 (5) ◽  
pp. 857-874 ◽  
Author(s):  
Sergios Petridis ◽  
Stavros J. Perantonis
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2748
Author(s):  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Núria Parés ◽  
Diego A. Tibaduiza ◽  
Francesc Pozo

Damage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition methodology for structural damage classification was developed in this study. The proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction, (5) classification using the extreme gradient boosting machine learning classifier, and (6) validation applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal component analysis are employed; the original data of 58,008 features is reduced to only 21 features. The methodology is validated with an experimental test performed in a small-scale wind-turbine foundation structure that simulates the perturbation effects caused by wind and marine waves by applying an unknown white noise signal excitation to the structure. A vibration-response methodology is selected for collecting accelerometer data from both the healthy structure and the structure subjected to four different damage scenarios. The datasets are satisfactorily classified, with performance measures over 99.9% after using the proposed damage classification methodology.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 270-279
Author(s):  
Quanbao Li ◽  
Fajie Wei ◽  
Shenghan Zhou

AbstractThe linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.


2017 ◽  
Vol E100.D (9) ◽  
pp. 2249-2252 ◽  
Author(s):  
Seongkyu MUN ◽  
Minkyu SHIN ◽  
Suwon SHON ◽  
Wooil KIM ◽  
David K. HAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document