Use of a migration technique to study alteration of compacted sand–bentonite mixture in contact with concrete

2008 ◽  
Vol 33 ◽  
pp. S276-S284 ◽  
Author(s):  
Takafumi Sugiyama ◽  
Yukikazu Tsuji
Keyword(s):  
Author(s):  
Xin Yuan ◽  
Kevin W. McCullen ◽  
Fook-Luen Heng ◽  
Robert F. Walker ◽  
Jason Hibbeler ◽  
...  

Author(s):  
Susmita J. A. Nair ◽  
T. R. Gopalakrishnan Nair

In virtualized servers, with live migration technique pages are copied from one physical machine to another while the virtual machine (VM) is running. The dynamic migration of virtual machines encumbers the data center which in turn reduces the performance of applications running on that particular physical machine. A considerable number of studies have been carried out in the area of performance evaluation during live VM migration.  However, all the aspects related to the migration process have not been examined for the performance assessment. In this paper, we propose a novel approach to evaluate the performance during migration process in different types of coupled machine environment. It is presented here that the state of art VM migration technology requires further improvement in realizing effective migration by monitoring comprehensive performance value. We introduced the parameter, θ, to compare performance value which can be used for controlling and halting unsuccessful migration and save significant amount of time in migration operation.  Our model is capable of analyzing real time scenario of cloud performance assessment targeting VM migration strategies. It also offers the possibility of further expanding to universal models for analyzing the performance variations that occurs as a result of VM migration.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA5-WCA17 ◽  
Author(s):  
John Etgen ◽  
Samuel H. Gray ◽  
Yu Zhang

Prestack depth migration is the most glamorous step of seismic processing because it transforms mere data into an image, and that image is considered to be an accurate structural description of the earth. Thus, our expectations of its accuracy, robustness, and reliability are high. Amazingly, seismic migration usually delivers. The past few decades have seen migration move from its heuristic roots to mathematically sound techniques that, using relatively few assumptions, render accurate pictures of the interior of the earth. Interestingly, the earth and the subjects we want to image inside it are varied enough that, so far, no single migration technique has dominated practical application. All techniques continually improve and borrow from each other, so one technique may never dominate. Despite the progress in structural imaging, we have not reached the point where seismic images provide quantitatively accurate descriptions of rocks and fluids. Nor have we attained the goal of using migration as part of a purely computational process to determine subsurface velocity. In areas where images have the highest quality, we might be nearing those goals, collectively called inversion. Where data are more challenging, the goals seem elusive. We describe the progress made in depth migration to the present and the most significant barriers to attaining its inversion goals in the future. We also conjecture on progress likely to be made in the years ahead and on challenges that migration might not be able to meet.


Sign in / Sign up

Export Citation Format

Share Document