Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain EM induction modelling

2010 ◽  
Vol 180 (3-4) ◽  
pp. 111-117 ◽  
Author(s):  
Jakub Velímský
2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Jakub Velímský ◽  
Ondřej Knopp

AbstractThe electrical conductivity is an important geophysical parameter connected to the thermal, chemical, and mineralogical state of the Earth’s mantle. In this paper, we apply the previously developed methodology of forward and inverse EM induction modeling to the latest version of satellite-derived spherical harmonic coefficients of external and internal magnetic field, and obtain the first 3-D mantle conductivity models with contributions from Swarm and CryoSat-2 satellite data. We recover degree 3 conductivity structures which partially overlap with the shape of the large low-shear velocity provinces in the lower mantle.


2020 ◽  
Author(s):  
Jakub Velímský ◽  
Ondřej Knopp

Abstract The electrical conductivity is an important geophysical parameter connected to the thermal, chemical, and mineralogical state of the Earth's mantle. In this paper we apply the previously developed methodology of forward and inverse EM induction modelling to the latest version of satellite-derived spherical harmonic coefficients of external and internal magnetic field, and obtain the first 3-D mantle conductivity models with contributions from Swarm and CryoSat-2 satellite data. We recover degree 3 conductivity structures which partially overlap with the shape of the large low-shear velocity provinces in the lower mantle.


Sign in / Sign up

Export Citation Format

Share Document