electrical conductivity
Recently Published Documents


TOTAL DOCUMENTS

22755
(FIVE YEARS 4470)

H-INDEX

167
(FIVE YEARS 25)

2022 ◽  
Vol 105 ◽  
pp. 122-130
Author(s):  
Fengnian Zhang ◽  
Fuhao Cheng ◽  
Chufei Cheng ◽  
Meng Guo ◽  
Yufeng Liu ◽  
...  

Author(s):  
Hanwen Yang ◽  
Jian Ouyang ◽  
Peng Cao ◽  
Wen Chen ◽  
Baoguo Han ◽  
...  

2022 ◽  
Vol 43 (2) ◽  
pp. 751-774
Author(s):  
Francisco Thiago Coelho Bezerra ◽  
◽  
Marlene Alexandrina Ferreira Bezerra ◽  
Raiff Ramos Almeida Nascimento ◽  
Walter Esfrain Pereira ◽  
...  

Salinity interferes in the physiology of seedlings from germination and seedling emergence, so it is necessary to adopt measures to mitigate its effects. The objectives of this research were to evaluate irrigation frequency, saline water, polymer, and container volume in the emergence and physiology of Talisia esculenta (A. St.-Hil.) Radlk. The treatments were obtained from the combination of polymer doses (0.0; 0.2; 0.6; 1.0; and 1.2 g dm-3), electrical conductivities of the irrigation water (0.3; 1, 1; 2.7; 4.3; and 5.0 dS m-1), and irrigation frequencies (daily and alternate), plus two additional treatments to assess the volume of the container. A randomized block design was used. Emergence and leaf indices of chlorophyll, fluorescence, and gas exchange were analyzed 100 days after sowing. The increase in electrical conductivity reduced and delayed seedling emergence. Decreasing irrigation frequency reduced the chlorophyll b index, stomatal conductance, transpiration, net CO2 assimilation, and carboxylation efficiency. The magnitude of the effects of electrical conductivity of water and polymer were associated with the frequency of irrigation. However, both salinity and polymer reduced practically all physiological variables. The reduction in container volume also affected the physiology of the seedlings, with more effects when irrigated on alternate days. The T. esculenta seedlings are considered sensitive to salinity, should be irrigated daily with water with less electrical conductivity than 1.0 dS m-1, as well as higher capacity containers used (0.75 vs 1.30 dm3).


Author(s):  
Dermeval A. Furtado ◽  
Ladyanne R. Rodrigues ◽  
Valéria P. Rodrigues ◽  
Neila L. Ribeiro ◽  
Rafael C. Silva ◽  
...  

ABSTRACT The supply of salt water in the semiarid region is a recurrent practice, as there is a severe shortage of water for use in animal consumption. Thus, most of the times the water offered to the birds can contain salts above the recommended amount. The present study aimed to evaluate the production performance and morphometry of the organs of Japanese quails as they were supplied with drinking water with different concentrations of sodium chloride, while being maintained in comfort and under thermal stress. The birds received water with increasing electrical conductivity (1.5, 3.0, 4.5 and 6.0 dS m-1) and were kept in a climate chamber at thermoneutral air temperature (24 °C) and under thermal stress (32 °C), being distributed in a completely randomized design and 2 × 4 factorial scheme. Water electrical conductivities did not affect the performance of the birds, except for the weight of the gizzard, which showed an increasing linear effect as the electrical conductivities increased. At the stress temperature, there was reduction in feed intake, egg weight and mass, and in feed conversion per dozen eggs, but with no effect on the weights of the heart, liver and gizzard. Japanese quails in the production phase can consume water with electrical conductivity of up to 6.0 dS m-1, showing good production performance and without compromising organ morphometry.


2022 ◽  
Vol 46 ◽  
pp. 102564
Author(s):  
Sabrine Ben Kacem ◽  
Davide Clematis ◽  
Sourour Chaâbane Elaoud ◽  
Antonio Barbucci ◽  
Marco Panizza

Author(s):  
Geovani S. de Lima ◽  
Francisco W. A. Pinheiro ◽  
Hans R. Gheyi ◽  
Lauriane A. dos A. Soares ◽  
Pedro F. do N. Sousa ◽  
...  

ABSTRACT The objective of this study was to evaluate the effects of saline water irrigation management strategies and potassium doses on the concentration of photosynthetic pigments, gas exchange, and fruit production of ‘BRS GA1’ yellow passion fruit. The experiment was carried out under field conditions using a randomized block design, with treatments based on a 6 × 2 factorial scheme, related to six management strategies for irrigation with saline water (irrigation with low-salinity water throughout the crop cycle-WS; irrigation with high-salinity water in the vegetative stage-VE; flowering stage-FL; fruiting stage-FR; and successively in vegetative/flowering stages-VE/FL and vegetative/fruiting stages-VE/FR) and two doses of potassium (60 and 100% of the recommendation), with four replicates. The dose of 100% recommendation corresponded to 345 g of K2O plant-1 year-1. High electrical conductivity irrigation water (4.0 dS m-1) was used in different phenological stages according to treatment, alternating with water of low electrical conductivity (1.3 dS m-1). The synthesis of chlorophyll a and b, stomatal conductance, instantaneous carboxylation efficiency and water use efficiency of ‘BRS GA1’ yellow passion fruit were reduced under irrigation with water of 4.0 dS m-1 in all strategies adopted. Fertilization with 60% of the K recommendation promoted greater number of fruits and yellow passion fruit yield. Irrigation with 4.0 dS m-1 water in the vegetative/flowering and flowering stages reduced the yield of yellow passion fruit.


2022 ◽  
Vol 217 ◽  
pp. 106388
Author(s):  
Hyunwook Choo ◽  
Junghee Park ◽  
Thu Thi Do ◽  
Changho Lee

Sign in / Sign up

Export Citation Format

Share Document