champ satellite
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Li Yang ◽  
Haote Ruan ◽  
Yunhan Zhang

In recent years, many low-orbit satellites have been widely used in the field of scientific research and national defense in China. In order to meet the demand of high-precision satellite orbit in China’s space, surveying and mapping, and other related fields, navigation satellites are of great significance. The UKF (unscented Kalman filter) method is applied to space targets’ spaceborne GPS autonomous orbit determination. In this paper, the UKF algorithm based on UT transformation is mainly introduced. In view of the situation that the system noise variance matrix is unknown or the dynamic model is not accurate, an adaptive UKF filtering algorithm is proposed. Simulation experiments are carried out with CHAMP satellite GPS data, and the results show that the filtering accuracy and stability are improved, which proves the algorithm’s effectiveness. The experimental results show that the Helmert variance component estimation considering the dynamics model can solve the problem of reasonable weight determination of BDS/GPS observations and effectively weaken the influence of coarse error and improve the accuracy of orbit determination. The accuracy of autonomous orbit determination by spaceborne BDS/GPS is 1.19 m and 2.35 mm/s, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. T. Karpachev

AbstractThe dynamics of ionospheric troughs that developed during a great geomagnetic storm on 11–13 April 2001 are studied using measurements of electron density obtained by the CHAMP satellite at an altitude of 410–465 km. Subauroral, mid-latitude and low-latitude troughs were observed at nighttime, sometimes simultaneously. The subauroral trough is usually defined as the main ionospheric trough, whereas the mid-latitude trough is associated with the magnetospheric ring current. It appeared at the beginning of the storm recovery phase around latitudes of 40°–45° GMLat (L = 1.7–2.0) and existed for a long period of time throughout the late recovery phase of the residual ring current at latitudes of 50°–55° GMLat (L ~ 2.4–3.0). For the first time, a low-latitude trough was revealed. It developed at latitudes of 34°–45° GMLat (L = 1.45–2.00) in association with the precipitation of energetic particles from the inner radiation belt.


2021 ◽  
Author(s):  
Dario Sabbagh ◽  
Loredana Perrone ◽  
Angelo De Santis ◽  
Saioa A. Campuzano ◽  
Gianfranco Cianchini ◽  
...  

<p>A combined ground-satellite study of the ionospheric response to the preparation phase of the M5.9 crustal earthquake occurred in L’Aquila (Italy) on April 6, 2009 is here presented. Ionospheric anomalies based on ionosonde observations of the altitude and blanketing frequency of the E-sporadic (Es) layer (<em>h</em>’Es and <em>f</em><sub>b</sub>Es, respectively) and of the critical frequency <em>f</em><sub>o</sub>F2 of the F2 layer are considered. For our analysis we make use of data from the Rome ionospheric observatory, located 90 km away from the earthquake epicentre, looking for anomalies up to a couple of months before the mainshock occurrence. Specifically, the variations for 2-3 hours of these parameters with respect to the past 27-day hourly running median are studied in relation to: (a) the ongoing geomagnetic activity during and several hours before the detection of the anomalies, as described by the values of the global a<sub>p</sub> and the auroral AE geomagnetic indices; (b) the earlier-obtained empirical relations for the seismic-ionospheric disturbances relating the earthquake magnitude with the epicentral distance and the anticipation time of the found anomalies. In addition, ionospheric anomalies in the electron density measured over the earthquake preparation region by the CHAllenging Minisatellite Payload (CHAMP) satellite at altitudes of about 320 km are studied in relation to the ionosonde-derived anomalies during the whole period preceding the mainshock occurrence.</p>


2021 ◽  
Author(s):  
Yunfang Zhong ◽  
Hui Wang ◽  
Zhichao Zheng ◽  
Yangfan He ◽  
Luyuan Sun ◽  
...  

<p>The auroral electrojet is an important element of the polar current system and an essential subject in space weather research. Based on the scalar magnetic field data from CHAMP satellite, we studied the influences of solar illumination and the dipole tilt angle (DTA) on the auroral electrojet as well as its seasonal variations. Furthermore, the auroral electrojet measured by satellite was compared with the auroral electrojet indices derived from the ground stations. It is shown that on the dayside, the auroral electrojet is more intense at a smaller solar zenith angle (SZA), whereas it’s more intense on the nightside when the SZA is larger. The daytime current is mainly controlled by the solar illumination, while the nighttime current is affected by the substorm. Compared with the solar illumination, the dipole tilt angle plays a minor role. The auroral electrojet shows an obvious annual and semiannual variation. The eastward electrojet and the dayside westward electrojet are more intense in summer than in winter, while the nightside westward electrojet is more intense in winter than in summer. The daytime westward electrojet is more intense at solstices, whereas the nighttime westward electrojet is more intense at equinoxes. The westward electrojet shows a good correlation with AL and SML indices. The eastward electrojet correlates well with the SMU index, but shows obvious difference with the AU index. The discrepancy can be attributed to the fact that the peak eastward electrojet is located outside the detection range of the auroral electrojet stations.</p>


2021 ◽  
Author(s):  
Daniel Billett ◽  
Gareth Perry ◽  
Lasse Clausen ◽  
William Archer ◽  
Kathryn McWilliams ◽  
...  

<p>Large thermospheric neutral density enhancements in the cusp region have been examined for many years. The CHAMP satellite for example has enabled many observations of the perturbation, showing that it is mesoscale in size and exists on statistical timescales. Further studies examining the relationship with magnetospheric energy input have shown that fine-scale Poynting fluxes are associated with the density perturbations on a case-by-case basis, whilst others have found that mesoscale downward fluxes also exist in the cusp region statistically.</p><p>In this study, we use nearly 8 years of the overlapping SuperDARN and AMPERE datasets to generate global-scale patterns of the high-latitude and height-integrated Poynting flux into the ionosphere, with a time resolution of two minutes. From these, average patterns are generated based on the IMF orientation. We show the cusp is indeed an important feature in the Poynting flux maps, but the magnitude does not correlate well with statistical neutral mass density perturbations observed by the CHAMP satellite on similar spatial scales. Mesoscale height-integrated Poynting fluxes thus cannot fully account for the cusp neutral mass density enhancement, meaning energy deposition in the F-region or on fine-scales, which is not captured by our analysis, could be the primary driver.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 534
Author(s):  
Alexander Karpachev

The dynamics of ionospheric troughs during intense geomagnetic storms is considered in this paper. The study is based on electron density measurements at CHAMP satellite altitudes of 405–465 km in the period from 2000 to 2002. A detailed analysis of four storms with Kp from 5+ to 9− is presented. Three troughs were identified: sub-auroral, mid-latitude, and low-latitude. The sub-auroral trough is usually defined as the main ionospheric trough (MIT). The mid-latitude trough is observed equatorward of the MIT and is associated with the magnetospheric ring current; therefore, it is named the ring ionospheric trough (RIT). The RIT appears at the beginning of the storm recovery phase at geomagnetic latitudes of 40–45° GMLat (L = 1.75–2.0) and exists, for a long time, at the late stage of the recovery phase at latitudes of the residual ring current 50–55° GMLat (L ~ 2.5–3.0). The low-latitude trough (LLT) is discovered for the first time. It forms only during great storms at the latitudes of the internal radiation belt (IRB), 34–45° GMLat (L = 1.45–2.0). The LLT’s lowest latitude of 34° GMLat was recorded in the night sector (2–3 LT). The occurrence probability and position of the RIT and LLT depend on the hemisphere and longitude.


2021 ◽  
Author(s):  
Alexander Karpachev

Abstract The dynamics of ionospheric troughs during great geomagnetic storm on April 11–13, 2001 is considered. An analysis is based on measurements of electron density at altitudes of the CHAMP satellite 410–465 km. The subauroral, mid-latitude and low-latitude troughs were observed at nighttime, sometimes simultaneously. The subauroral trough is usually defined as the main ionospheric trough. The mid-latitude trough is associated with the magnetospheric ring current. It appears at the beginning of the storm recovery phase at latitudes of 40–45° GMLat (L=1.7–2.0) and exists for a long time at the late recovery phase at latitudes of the residual ring current 50–55° GMLat (L~2.4–3.0). The low-latitude trough was revealed for the first time. It is developed at the latitudes of the inner radiation belt 34–45° GMLat (L=1.45–2.00). This trough is associated with the precipitation of energetic particles from the inner radiation belt.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Zié Tuo ◽  
Vafi Doumbia ◽  
Pierdavide Coïsson ◽  
N’Guessan Kouassi ◽  
Abdel Aziz Kassamba

AbstractIn this study, the seasonal variations of the EEJ longitudinal profiles were examined based on the full CHAMP satellite magnetic measurements from 2001 to 2010. A total of 7537 satellite noon-time passes across the magnetic dip-equator were analyzed. On the average, the EEJ exhibits the wave-four longitudinal pattern with four maxima located, respectively, around 170° W, 80° W, 10° W and 100° E longitudes. However, a detailed analysis of the monthly averages yielded the classification of the longitudinal profiles in two types. Profiles with three main maxima located, respectively, around 150° W, 0° and 120° E, were observed in December solstice (D) of the Lloyd seasons. In addition, a secondary maximum observed near 90° W in November, December and January, reinforces from March to October to establish the wave-four patterns of the EEJ longitudinal variation. These wave-four patterns were divided into two groups: a group of transition which includes equinox months March, April and October and May in the June solstice; and another group of well-established wave-four pattern which covers June, July, August of the June solstice and the month of September in September equinox. For the first time, the motions in the course of seasons of various maxima of the EEJ noon-time longitudinal profiles have been clearly highlighted.


Sign in / Sign up

Export Citation Format

Share Document