Earth Planets and Space
Latest Publications


TOTAL DOCUMENTS

3941
(FIVE YEARS 574)

H-INDEX

71
(FIVE YEARS 8)

Published By Springer-Verlag

1880-5981, 1343-8832

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Shuhei Tsuji ◽  
Koshun Yamaoka ◽  
Ryoya Ikuta

AbstractWe developed a method to detect attenuation changes during seismic wave propagation excited by precisely controlled artificial seismic sources, namely Accurately Controlled Routinely Operated Signal System (ACROSS), and applied it to monitor the temporal changes for in situ data collected by previous studies. Our method, together with the use of the ACROSS sources, is less susceptible to noise level changes, from which conventional methods such as envelope calculation suffer. The method utilizes the noise level that is independently estimated in the frequency domain and eliminates the influence of the noise from the observed signal. For performance testing, we applied this method to a dataset that was obtained in an experiment at Awaji Island, Japan, from 2000 to 2001. We detected a change in amplitude caused by rainfall, variation in atmospheric temperature, and coseismic ground motions. Among them, coseismic changes are of particular interest because there are limited studies on coseismic attenuation change, in contrast to many studies on coseismic velocity decrease. At the 2000 Western Tottori earthquake (MW = 6.6, epicenter distance of 165 km), a sudden decrease in amplitude of up to 5% was observed. The coseismic amplitude reduction and its anisotropic characteristics, which showed a larger reduction in the direction of the major axis of velocity decrease, were consistent with the opening of fluid-filled cracks, as proposed by previous studies. The $$\Delta {Q}^{-1}$$ Δ Q - 1 corresponding to the amplitude change gives similar values to those reported in previous studies using natural earthquakes. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Yojiro Yamamoto ◽  
Keisuke Ariyoshi ◽  
Shuichiro Yada ◽  
Masaru Nakano ◽  
Takane Hori

AbstractWe estimate the hypocenter locations and the centroid moment tensor solutions of the shallow very-low-frequency earthquake (sVLFE) activity that occurred in the Kumano-nada region of the Nankai Trough megathrust zone in central Japan from December 2020 to January 2021. Using seafloor observation data, we examined the detailed spatio-temporal distribution of the sVLFE activity. During this episode, the activity area was within the vicinity in which the sVLFE activity has been observed in the past and can be divided into two major parts. The sVLFE activity started from the eastern side and remained there for the first 5 days and then migrated to the western side via secondary expansion. The eastern active area is located just below the outer ridge and coincides with the location where the paleo-Zenith Ridge subducted. The western activity area is centered between the outer wedge and the outer ridge with the primary active area being at the outer wedge. Comparing the activity in the eastern and western areas, the eastern side is more active, but the individual moment releases on this side are smaller than those on the western side. This may indicate a difference in the fluid pressure along the plate boundary between the eastern and western areas. After the second expansion of the active area, we observed several migration patterns within the expanded area with a faster velocity than those of the initial and second expansions. The direction of these migrations is opposite to that of the first and second expansions. This indicates that the fluid pressure and/or stress level in the sVLFE generation region changed with time within this episode. Furthermore, many waveforms with sVLFE characteristics were observed at only one or a few observation points near the trough axis in the middle to latter half of January 2021. This indicates the occurrence of small-scale sVLFEs in the vicinity of the trough axis at the end of this sVLFE episode. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Satoshi Fujiwara ◽  
Mikio Tobita ◽  
Shinzaburo Ozawa

AbstractPostseismic deformations continue to occur for a long period after major earthquakes. Temporal changes in postseismic deformations can be approximated using simple functions. Since the 2011 Tohoku-Oki earthquake, operating global navigation satellite system stations have been continuously accumulating a remarkable amount of relevant data. To verify the functional model, we performed statistical data processing on postseismic deformations due to this earthquake and obtained their spatiotemporal distribution. Moreover, we approximated the postseismic deformations over a relatively wide area with a standard deviation of residuals of 1 cm for approximately 10 years using a combined functional model of two logarithmic and one exponential functions; however, the residuals from the functional model exhibited a marked deviation since 2015. Although the pattern of postseismic deformations remained unaltered after the earthquake, a change in the linear deformation occurred from 2015 to date. We reduced the overall standard deviation of the residuals of > 200 stations distributed over > 1000 km to < 0.4 cm in the horizontal component by enhancing the functional model to incorporate this linear deformation. Notably, time constants of the functions were similarly applicable for all stations and components. Furthermore, the spatial distribution of the coefficients of each time constant were nonrandom, and the distribution was spatially smooth, with minute changes in the short wavelengths in space. Thus, it is possible to obtain a gridded model in terms of a spatial function. The spatial distributions of short- and long-period components of the functional model and afterslip and viscoelastic relaxation calculated using the physical model were similar to each other, respectively. Each time function revealed a connotation regarding the physical processes, which provided an understanding of the physical phenomena involved in seismogenesis. The functional model can be used to practical applications, such as discerning small variations and modeling for precise positioning. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Fuyuki Hirose ◽  
Kenji Maeda ◽  
Osamu Kamigaichi

AbstractThe correlation between Earth’s tides and background seismicity has been suggested to become stronger before great earthquakes and weaker after. However, previous studies have only retrospectively analyzed this correlation after individual large earthquakes; it thus remains vague (i) whether such variations might be expected preceding future large earthquakes, and (ii) the strength of the tidal correlation during interseismic periods. Therefore, we retrospectively investigated whether significant temporal variations of the tidal correlation precede large interplate earthquakes along the Tonga–Kermadec trench, where Mw 7-class earthquakes frequently occurred from 1977 to 31 December 2020. We evaluated a forecast model based on the temporal variations of the tidal correlation via Molchan’s error diagram, using the tidal correlation value itself as well as its rate of change as threshold values. For Mw ≥ 7.0 earthquakes, this model was as ineffective as random guessing. For Mw ≥ 6.5, 6.0, or 5.5 earthquakes, the forecast model performed better than random guessing in some cases, but even the best forecast only had a probability gain of about 1.7. Therefore, the practicality of this model alone is poor, at least in this region. These results suggest that changes of the tidal correlation are not reliable indicators of large earthquakes along the Tonga–Kermadec trench. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Emmanuel Nahayo ◽  
Monika Korte

AbstractA regional harmonic spline geomagnetic main field model, Southern Africa Core Field Model (SACFM-3), is derived from Swarm satellite and ground-based data for the southern African region, in the eastern part of the South Atlantic Anomaly (SAA) where the field intensity continues to decrease. Using SACFM-3 and the global CHAOS-6-×9 model, a detailed study was conducted to shed light on the high spatial and temporal geomagnetic field variations over Southern Africa between 2014 and 2019. The results show a steady decrease of the radial component Z in almost the entire region. In 2019, its rate of decrease in the western part of the region has reached high values, 76 nT/year and 78 nT/year at Tsumeb and Keetmanshoop magnetic observatories, respectively. For some areas in the western part of the region the radial component Z and field intensity F have decreased in strength, from 1.0 to 1.3% and from 0.9 to 1.2%, respectively, between the epochs 2014.5 and 2019.5. There is a noticeable decrease of the field intensity from the south-western coast of South Africa expanding towards the north and eastern regions. The results show that the SAA area is continuing to grow in the region. Abrupt changes in the linear secular variation in 2016 and 2017 are confirmed in the region using ground-based data, and the X component shows an abrupt change in the secular variation in 2018 at four magnetic observatories (Hermanus, Hartebeesthoek, Tsumeb and Keetmanshoop) that needs further investigation. The regional model SACFM-3 reflects to some extent these fast core field variations in the Z component at Hermanus, Hartebeesthoek and Keetmanshoop observatories. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Michel Parrot ◽  
Frantisěk Němec ◽  
Morris B. Cohen ◽  
Mark Gołkowski

AbstractA spectrogram of Power Line Harmonic Radiation (PLHR) consists of a set of lines with frequency spacing corresponding exactly to 50 or 60 Hz. It is distinct from a spectrogram of Magnetospheric Line Radiation (MLR) where the lines are not equidistant and drift in frequency. PLHR and MLR propagate in the ionosphere and the magnetosphere and are recorded by ground experiments and satellites. If the source of PLHR is evident, the origin of the MLR is still under debate and the purpose of this paper is to understand how MLR lines are formed. The ELF waves triggered by High-frequency Active Auroral Research Program (HAARP) in the ionosphere are used to simulate lines (pulses of different lengths and different frequencies). Several receivers are utilized to survey the propagation of these pulses. The resulting waves are simultaneously recorded by ground-based experiments close to HAARP in Alaska, and by the low-altitude satellite DEMETER either above HAARP or its magnetically conjugate point. Six cases are presented which show that 2-hop echoes (pulses going back and forth in the magnetosphere) are very often observed. The pulses emitted by HAARP return in the Northern hemisphere with a time delay. A detailed spectral analysis shows that sidebands can be triggered and create elements with superposed frequency lines which drift in frequency during the propagation. These elements acting like quasi-periodic emissions are subjected to equatorial amplification and can trigger hooks and falling tones. At the end all these known physical processes lead to the formation of the observed MLR by HAARP pulses. It is shown that there is a tendency for the MLR frequencies of occurrence to be around 2 kHz although the exciting waves have been emitted at lower and higher frequencies. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Masanao Shinohara ◽  
Shin’ichi Sakai ◽  
Tomomi Okada ◽  
Hiroshi Sato ◽  
Yusuke Yamashita ◽  
...  

AbstractAn earthquake with a magnitude of 6.7 occurred in the Japan Sea off Yamagata on June 18, 2019. The mainshock had a source mechanism of reverse-fault type with a compression axis of WNW–ESE direction. Since the source area is positioned in a marine area, seafloor seismic observation is indispensable for obtaining the precise distribution of the aftershocks. The source area has a water depth of less than 100 m, and fishing activity is high. It is difficult to perform aftershock observation using ordinary free-fall pop-up type ocean bottom seismometers (OBSs). We developed a simple anchored-buoy type OBS for shallow water depths and performed the seafloor observation using this. The seafloor seismic unit had three-component seismometers and a hydrophone. Two orthogonal tiltmeters and an azimuth meter monitored the attitude of the package. For seismic observation at shallow water depth, we concluded that an anchored-buoy system would have the advantage of avoiding accidents. Our anchored-buoy OBS was based on a system used in fisheries. We deployed three anchored-buoy OBSs in the source region where the water depth was approximately 80 m on July 5, 2019, and two of the OBSs were recovered on July 13, 2019. Temporary land seismic stations with a three-component seismometer were also installed. The arrival times of P- and S-waves were read from the records of the OBSs and land stations, and we located hypocenters with correction for travel time. A preliminary location was performed using absolute travel time and final hypocenters were obtained using the double-difference method. The aftershocks were distributed at a depth range of 2.5 km to 10 km and along a plane dipping to the southeast. The plane formed by the aftershocks is consistent with the focal mechanism of the mainshock. The activity region of the aftershocks was positioned in the upper part of the upper crust. Focal mechanisms were estimated using the polarity of the first arrivals. Although many aftershocks had a reverse-fault focal mechanism similar to the focal solution of the mainshock, normal-fault type and strike–slip fault type focal mechanisms were also estimated. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Ivan Melchor ◽  
Javier Almendros ◽  
Marcia Hantusch ◽  
Sergey Samsonov ◽  
Dominique Derauw ◽  
...  

AbstractUnderstanding seismic tremor wavefields can shed light on the complex functioning of a volcanic system and, thus, improve volcano monitoring systems. Usually, several seismic stations are required to detect, characterize, and locate volcanic tremors, which can be difficult in remote areas or low-income countries. In these cases, alternative techniques have to be used. Here, we apply a data-reduction approach based on the analysis of three-component seismic data from two co-located stations operating in different times to detect and analyze long-duration tremors. We characterize the spectral content and the polarization of 355 long-duration tremors recorded by a seismic sensor located 9.5 km SE from the active vent of Copahue volcano in the period 2012–2016 and 2018–2019. We classified them as narrow- (NB) and broad-band (BB) tremors according to their spectral content. Several parameters describe the characteristic peaks composing each NB episode: polarization degree, rectilinearity, horizontal azimuth, vertical incidence. Moreover, we propose two coefficients $$C_P$$ C P and $$C_L$$ C L for describing to what extent the wavefield is polarized. For BB episodes, we extend these attributes and express them as a function of frequency. We compare the occurrence of NB and BB episodes with the volcanic activity (including the level of the crater lake, deformation, temperature, and explosive activity) to get insights into their mechanisms. This comparison suggests that the wavefield of NB tremors becomes more linearly polarized during eruptive episodes, but does not provide any specific relationship between the tremor frequency and volcanic activity. On the other hand, BB tremors show a seasonal behavior that would be related to the activity of the shallow hydrothermal system. Graphical Abstract


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Masaki N. Nishino ◽  
Yoshiya Kasahara ◽  
Yuki Harada ◽  
Yoshifumi Saito ◽  
Hideo Tsunakawa ◽  
...  

AbstractWave–particle interactions are fundamental processes in space plasma, and some plasma waves, including electrostatic solitary waves (ESWs), are recognised as broadband noises (BBNs) in the electric field spectral data. Spacecraft observations in recent decades have detected BBNs around the Moon, but the generation mechanism of the BBNs is not fully understood. Here, we study a wake boundary traversal with BBNs observed by Kaguya, which includes an ESW event previously reported by Hashimoto et al. Geophys Res Lett 37:L19204 10.1029/2010GL044529 (2010). Focusing on the relation between BBNs and electron pitch-angle distribution functions, we show that upward electron beams from the nightside lunar surface are effective for the generation of BBNs, in contrast to the original interpretation by Hashimoto et al. Geophys Res Lett 37:L19204 10.1029/2010GL044529 (2010) that high-energy electrons accelerated by strong ambipolar electric fields excite ESWs in the region far from the Moon. When the BBNs were observed by the Kaguya spacecraft in the wake boundary, the spacecraft’s location was magnetically connected to the nightside lunar surface, and bi-streaming electron distributions of downward-going solar wind strahl component and upward-going field-aligned beams (at $$\sim$$ ∼ 124 eV) were detected. The interplanetary magnetic field was dominated by a positive $$B_Z$$ B Z (i.e. the northward component), and strahl electrons travelled in the antiparallel direction to the interplanetary magnetic field (i.e. southward), which enabled the strahl electrons to precipitate onto the nightside lunar surface directly. The incident solar wind electrons cause negative charging of the nightside lunar surface, which generates downward electric fields that accelerate electrons from the nightside surface toward higher altitudes along the magnetic field. The bidirectional electron distribution is not a sufficient condition for the BBN generation, and the distribution of upward electron beams seems to be correlated with the BBNs. Ambipolar electric fields in the wake boundary should also contribute to the electron acceleration toward higher altitudes and further intrusion of the solar wind ions into the deeper wake. We suggest that solar wind ion intrusion into the wake boundary is also an important factor that controls the BBN generation by facilitating the influx of solar wind electrons there. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document