Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model

2010 ◽  
Vol 389 (4) ◽  
pp. 789-796 ◽  
Author(s):  
Xiao-Tian Wang
2007 ◽  
Vol 03 (01) ◽  
pp. 0750001 ◽  
Author(s):  
CHENGHU MA

This paper derives an equilibrium formula for pricing European options and other contingent claims which allows incorporating impacts of several important economic variable on security prices including, among others, representative agent preferences, future volatility and rare jump events. The derived formulae is general and flexible enough to include some important option pricing formulae in the literature, such as Black–Scholes, Naik–Lee, Cox–Ross and Merton option pricing formulae. The existence of jump risk as a potential explanation of the moneyness biases associated with the Black–Scholes model is explored.


Author(s):  
Özge Sezgin Alp

In this study, the option pricing performance of the adjusted Black-Scholes model proposed by Corrado and Su (1996) and corrected by Brown and Robinson (2002), is investigated and compared with original Black Scholes pricing model for the Turkish derivatives market. The data consist of the European options written on BIST 30 index extends from January 02, 2015 to April 24, 2015 for given exercise prices with maturity April 30, 2015. In this period, the strike prices are ranging from 86 to 124. To compare the models, the implied parameters are derived by minimizing the sum of squared deviations between the observed and theoretical option prices. The implied distribution of BIST 30 index does not significantly deviate from normal distribution. In addition, pricing performance of Black Scholes model performs better in most of the time. Black Scholes pricing Formula, Carrado-Su pricing Formula, Implied Parameters


2015 ◽  
Vol 18 (05) ◽  
pp. 1550029 ◽  
Author(s):  
FERNANDO CORDERO ◽  
LAVINIA PEREZ-OSTAFE

We study the arbitrage opportunities in the presence of transaction costs in a sequence of binary markets approximating the fractional Black–Scholes model. This approximating sequence was constructed by Sottinen and named fractional binary markets. Since, in the frictionless case, these markets admit arbitrage, we aim to determine the size of the transaction costs needed to eliminate the arbitrage from these models. To gain more insight, we first consider only 1-step trading strategies and we prove that arbitrage opportunities appear when the transaction costs are of order [Formula: see text]. Next, we characterize the asymptotic behavior of the smallest transaction costs [Formula: see text], called "critical" transaction costs, starting from which the arbitrage disappears. Since the fractional Black–Scholes model is arbitrage-free under arbitrarily small transaction costs, one could expect that [Formula: see text] converges to zero. However, the true behavior of [Formula: see text] is opposed to this intuition. More precisely, we show, with the help of a new family of trading strategies, that [Formula: see text] converges to one. We explain this apparent contradiction and conclude that it is appropriate to see the fractional binary markets as a large financial market and to study its asymptotic arbitrage opportunities. Finally, we construct a 1-step asymptotic arbitrage in this large market when the transaction costs are of order o(1/NH), whereas for constant transaction costs, we prove that no such opportunity exists.


Sign in / Sign up

Export Citation Format

Share Document