scholarly journals Transport coefficients of the fully ionized plasma with kappa-distribution and in strong magnetic field

2019 ◽  
Vol 523 ◽  
pp. 156-171 ◽  
Author(s):  
Ran Guo ◽  
Jiulin Du
2021 ◽  
Vol 81 (7) ◽  
Author(s):  
He-Xia Zhang ◽  
Jin-Wen Kang ◽  
Ben-Wei Zhang

AbstractThe Seebeck effect and the Nernst effect, which reflect the appearance of electric fields along x-axis and along y-axis ($$E_{x}$$ E x and $$E_{y}$$ E y ), respectively, induced by the thermal gradient along x-axis, are studied in the QGP at an external magnetic field along z-axis. We calculate the associated Seebeck coefficient ($$S_{xx}$$ S xx ) and Nernst signal (N) using the relativistic Boltzmann equation under the relaxation time approximation. In an isotropic QGP, the influences of magnetic field (B) and quark chemical potential ($$\mu _{q}$$ μ q ) on these thermoelectric transport coefficients are investigated. In the presence (absence) of weak magnetic field, we find $$S_{xx}$$ S xx for a fixed $$\mu _{q}$$ μ q is negative (positive) in sign, indicating that the dominant carriers for converting heat gradient to electric field are negatively (positively) charged quarks. The absolute value of $$S_{xx}$$ S xx decreases with increasing temperature. Unlike $$S_{xx}$$ S xx , the sign of N is independent of charge carrier type, and its thermal behavior displays a peak structure. In the presence of strong magnetic field, due to the Landau quantization of transverse motion of (anti-)quarks perpendicular to magnetic field, only the longitudinal Seebeck coefficient ($$S_{zz}$$ S zz ) exists. Our results show that the value of $$S_{zz}$$ S zz at a fixed $$\mu _{q}$$ μ q in the lowest Landau level (LLL) approximation always remains positive. Within the effect of high Landau levels, $$S_{zz}$$ S zz exhibits a thermal structure similar to that in the LLL approximation. As the Landau level increases further, $$S_{zz}$$ S zz decreases and even its sign changes from positive to negative. The computations of these thermoelectric transport coefficients are also extended to a medium with momentum-anisotropy induced by initial spatial expansion as well as strong magnetic field.


1967 ◽  
Vol 1 (3) ◽  
pp. 327-339 ◽  
Author(s):  
J. P. Dougherty ◽  
S. R. Watson ◽  
M. A. Hellberg

The Chapman—Enskog expansion is applied to the model Fokker—Planck equation for a plasma, derived in part 2. It is shown that the complete set of transport coefficients can be calculated without further approximations. Results are derived first in the absence of any external magnetic field. The transport coefficients are also derived when there is a strong magnetic field, in which case they become anisotropic.


1981 ◽  
Vol 30 (3) ◽  
pp. 315
Author(s):  
HU XI-WEI ◽  
HUO YU-PING ◽  
CHEN ZHENG-XONG ◽  
ZHANG CHENG

Sign in / Sign up

Export Citation Format

Share Document