transverse motion
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 42)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Mehran Tirandazian ◽  
Gholamreza Nouri

The core objectives of sustainable development are to develop access to renewable, sustainable, reliable, and cost-effective resources. Wind is an essential source of renewable energy, and monopile wind turbines are one method proposed for harnessing wind power. Offshore wind turbines can be vulnerable to earthquakes and liquefaction. This numerical study defined the effects of wind turbine weight on the seismic response of a wind turbine-monopile system located in liquefied multilayered soil with layer thicknesses of 5, 10, 15, and 20 m using four far-field records. OpenSees PL analysis indicated that if the liquefied sand had a lower density or a thickness of more than 10 m, then an increase in the earthquake acceleration beyond 0.4 g caused the pile to float like liquefied soil and to lose its vertical bearing capacity. Moreover, increasing the wind turbine power from 2 to 5 kW had no significant effect on the soil-structure interaction response. As the earthquake acceleration increased, the bending moment of the pile-column also increased as long as liquefaction did not occur and the pile-column deformation remained rotational-spatial in shape. As the acceleration and liquefaction increased and the pile began to float in response to its transverse motion, there was no significant difference in the pile-column displacement along the length, but there was a decrease in the pile-column bending moments. As this phenomenon increased and the pile continued to float, transformation of the pile increased the difference between the displacement of the pile-column along its length and further increased the bending moments. These results were derived from multiple correlation analysis, the bending moment relations, and lateral displacement of the pile-column of the wind turbine.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012021
Author(s):  
Songcheng Pu ◽  
Yumin He ◽  
Qijiang Yang ◽  
Ming Cheng ◽  
Yupeng Wang ◽  
...  

Abstract In many cases, ships will encounter special conditions, such as bad sea conditions, and the effect of various disturbance factors, such as wind and waves, will cause low-frequency longitudinal and transverse rocking motion of ships. This would affect the rotor-bearing system of the power plant, which is directly attached to the hull of the ship, and would roll along with the hull in the same longitudinal and transverse motion. This will have a significant impact on the stability of the rotor bearing system of the ship power plant and the safety of the ship. In this paper, a rotor-bearing test rig is mounted on a multi-degree-of-freedom swing test rig simulating sea conditions. The multi-degree-of-freedom rocking test bed simulates sea conditions. The rotor-bearing test bed is equipped with an eddy current sensor and an acceleration sensor to obtain experimental data. The programmable loader is used to control the rotor speed so as to carry out the experiment process at different speeds. Finally, the dynamic characteristics of rotor-bearing system under swinging condition are obtained.


Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 381-390
Author(s):  
Maksim L. Nekrasov

A scenario of the evolution of the shape of nucleons with increasing energy is described in the framework of an extended parton model, which consistently takes into account the transverse motion of the partons. At the energy E up to LHC, the nucleons have the form of a spheroid which expands as lnE in the transverse directions and grows linearly in E in the longitudinal direction. With a further increase in the energy, a mode of correlated behavior of the partons is established, which stops the longitudinal growth. Simultaneously, the expansion in the transverse directions changes to lnE, and a hollow mostly free of partons is formed inside the nucleons along the central axis in the direction of their motion. Numerical estimates of the corresponding parameters are obtained.


Author(s):  
Marcus Brown ◽  
John Bradshaw ◽  
Rong Z. Gan

Abstract Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate displacements up to 28.5µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2µm from a BOP input of 30.7kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses towards a model able to predict potential hearing loss after blast.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4569
Author(s):  
Jerzy Kisilowski ◽  
Elżbieta Kowalik-Adamczyk

This article presents a definition of stochastic technical stability that was applied to test a mathematical model of a passenger railroad car crossing a turnout with the speed exceeding 160 km/h. Stability defined in this way allows testing of Lyapunov’s stability with disturbances from the track and for a nonlinear system. The STS test of a nonlinear mathematical model of a passenger car was carried out by perturbing the motion of the mathematical model with irregularities originating from the track gauge change and wheelset motion in the direction transverse to the track axis. The main aim of this paper was to determine the influence of various factors and technical conditions on the assessment of the stability of various means of transport. The analysis presented can be used to assess the dynamics of electric vehicles, whose mechanical parameters differ from those of combustion vehicles at present. The area of stable motion in the Lyapunov sense was defined using the STS method. Simulations were performed to determine the trajectory of the wheelset transverse motion. The probability of finding the wheelset in the stable motion area in relation to the rail for a single-point contact was determined. In practice, this is a one-point contact of the wheel with the rail. Conclusions from the conducted research are presented. 


2021 ◽  
Vol 13 (8) ◽  
Author(s):  
Alessandro Aleo ◽  
Rossella Duches ◽  
Armando Falcucci ◽  
Veerle Rots ◽  
Marco Peresani

AbstractEndscrapers are specialized tools that are usually recovered in great quantities in every Upper Paleolithic site in Europe. Although they make their first ephemeral appearance in the Middle–late Middle Paleolithic transitional technocomplexes, endscrapers commonly appear in toolkits from initial and early Upper Paleolithic traditions onwards. Nevertheless, endscrapers and, in general, domestic tools have attracted relatively little attention in debates revolving around the significance of technological change, tool function, and tool specialization after the end of the Middle Paleolithic. With the aim to overcome this paucity of information, here, we present the results of a techno-functional study performed on the large endscraper assemblage recovered from the early and late Protoaurignacian layers at Fumane Cave in northeastern Italy. We analyzed these artifacts using technological, morpho-metrical, typological, and functional approaches. Despite the large morphological variability, use-wear traces reveal functional consistency and high levels of specialization for these tools. Almost all the use-wear traces we recorded developed from hide working with transverse motion. Moreover, we find no evidence that endscrapers were involved in the production of bone and antler tools during the late Protoaurignacian. Macroscopic and microscopic wear on the lateral edges of tools point to a considerable number of hafted endscrapers, which implies systematic time investment and planning depth. Comparison with the few endscrapers from transitional industries that have been analyzed highlights marked differences in the production, morphology, and use of these tools and reinforces our view of the Aurignacian as a complex not directly related with preceding European traditions.


Measurement ◽  
2021 ◽  
pp. 109888
Author(s):  
Piotr Wcisło ◽  
Hao Wu ◽  
David Reens ◽  
Alexander Aeppli ◽  
Jun Ye

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
He-Xia Zhang ◽  
Jin-Wen Kang ◽  
Ben-Wei Zhang

AbstractThe Seebeck effect and the Nernst effect, which reflect the appearance of electric fields along x-axis and along y-axis ($$E_{x}$$ E x and $$E_{y}$$ E y ), respectively, induced by the thermal gradient along x-axis, are studied in the QGP at an external magnetic field along z-axis. We calculate the associated Seebeck coefficient ($$S_{xx}$$ S xx ) and Nernst signal (N) using the relativistic Boltzmann equation under the relaxation time approximation. In an isotropic QGP, the influences of magnetic field (B) and quark chemical potential ($$\mu _{q}$$ μ q ) on these thermoelectric transport coefficients are investigated. In the presence (absence) of weak magnetic field, we find $$S_{xx}$$ S xx for a fixed $$\mu _{q}$$ μ q is negative (positive) in sign, indicating that the dominant carriers for converting heat gradient to electric field are negatively (positively) charged quarks. The absolute value of $$S_{xx}$$ S xx decreases with increasing temperature. Unlike $$S_{xx}$$ S xx , the sign of N is independent of charge carrier type, and its thermal behavior displays a peak structure. In the presence of strong magnetic field, due to the Landau quantization of transverse motion of (anti-)quarks perpendicular to magnetic field, only the longitudinal Seebeck coefficient ($$S_{zz}$$ S zz ) exists. Our results show that the value of $$S_{zz}$$ S zz at a fixed $$\mu _{q}$$ μ q in the lowest Landau level (LLL) approximation always remains positive. Within the effect of high Landau levels, $$S_{zz}$$ S zz exhibits a thermal structure similar to that in the LLL approximation. As the Landau level increases further, $$S_{zz}$$ S zz decreases and even its sign changes from positive to negative. The computations of these thermoelectric transport coefficients are also extended to a medium with momentum-anisotropy induced by initial spatial expansion as well as strong magnetic field.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
Christiaan Smith Veldman

This paper describes novel design changes to the accelerometer mounting support of a commercial pneumatic shock exciter, with the aim of reducing the transverse motion the accelerometer is subjected to during shock excitation. The author describes the mounting support supplied by the manufacturer, the design changes made and the measurement data to compare the transfer motions recorded using two different mounting designs.


Sign in / Sign up

Export Citation Format

Share Document