transport coefficients
Recently Published Documents


TOTAL DOCUMENTS

2514
(FIVE YEARS 291)

H-INDEX

91
(FIVE YEARS 9)

2022 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Aleksandr G. Novoselov ◽  
Sergei A. Sorokin ◽  
Igor V. Baranov ◽  
Nikita V. Martyushev ◽  
Olga N. Rumiantceva ◽  
...  

This article puts forward arguments in favor of the necessity of conducting complex measurements of molecular transport coefficients that quantitatively determine the coefficients of dynamic viscosity, thermal diffusivity and molecular diffusion. The rheological studies have been carried out on the viscometers of two types: those with a rolling ball (HÖPPLER® KF 3.2.), and those with a rotary one (Rheotest RN 4.1.). The thermophysical studies have been performed using the analyzer Hot Disk TPS 2500S. The measurements have been taken in the temperature range of 283 to 363 K. The concentration of dry substances has varied from 16.2 to 77.7% dry wt. An empirical equation for calculating the density of aqueous solutions of beet molasses has been obtained. The diagrams of the dependence of the dynamic viscosity on the shear rate in the range of 1 s−1 to 500 s−1 at different temperatures have been provided. The diagrams of the dependence of the coefficients of thermal conductivity and thermal diffusivity on the temperature and the concentration of dry substances have been presented, and empirical equations for their calculation have been obtained. The findings can be used for engineering calculations of hydrodynamic and heat-exchange processes in biotechnological equipment.


2022 ◽  
Vol 258 ◽  
pp. 01007
Author(s):  
Jon-Ivar Skullerud

I review some of the recent progress in QCD at high temperature and density, with a focus on the nature of the high-temperature transition; cold and dense matter; and hadron properties and transport coefficients at high temperature.


2022 ◽  
Vol 258 ◽  
pp. 04004
Author(s):  
Glòria Montaña

We have developed a self-consistent theoretical approach to study the modification of the properties of heavy mesons in hot mesonic matter which takes into account chiral and heavy-quark spin-flavor symmetries. The heavylight meson-meson unitarized scattering amplitudes in coupled channels incorporate thermal corrections by using the imaginary-time formalism, as well as the dressing of the heavy mesons with the self-energies. We report our results for the ground-state thermal spectral functions and the implications for the excited mesonic states generated dynamically in the heavy-light molecular model. We have applied these to the calculation of meson Euclidean correlators and transport coefficients for D mesons and summarize here our findings.


2022 ◽  
Vol 2022 (1) ◽  
pp. 014002 ◽  
Author(s):  
Jacopo De Nardis ◽  
Benjamin Doyon ◽  
Marko Medenjak ◽  
Miłosz Panfil

Abstract We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.


2022 ◽  
Vol 258 ◽  
pp. 05008
Author(s):  
Alexander Soloviev

The evolution of a heavy ion collision passes close to the O(4) critical point of QCD, where fluctuations of the order parameter are expected to be enhanced. Using the appropriate stochastic hydrodynamic equations in mean field near the the pseudo-critical point, we compute how these enhanced fluctuations modify the transport coefficients of QCD. Finally, we estimate the expected critical enhancement of soft pion yields, which provides a plausible explanation for the excess seen in experiment relative to ordinary hydrodynamic computations.


2022 ◽  
Vol 258 ◽  
pp. 05005
Author(s):  
Peter Vander Griend

We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark gluon plasma using the Monte Carlo wave function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and elliptic flow and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.


Author(s):  
Shahram Yalameha ◽  
Zahra Nourbakhsh ◽  
Daryoosh Vashaee

Abstract We report the topological phase, thermal, and electrical properties of bialkali bismuthide compounds (Na,K)2RbBi, as yet hypothetical. The topological phase transitions of these compounds under hydrostatic pressure are investigated. The calculated topological surface states and Z2 topological index confirm the nontrivial topological phase. The electronic properties and transport coefficients are obtained using the density functional theory combined with the Boltzmann transport equation. The relaxation times are determined using the deformation potential theory to calculate the electronic thermal and electrical conductivity. The calculated mode Grüneisen parameters are substantial, indicating strong anharmonic acoustic phonons scattering, which results in an exceptionally low lattice thermal conductivity. These compounds also have a favorable thermoelectric power factor leading to a relatively flat p-type figure-of-merit over a broad temperature range. Furthermore, the mechanical properties and phonon band dispersions show that these structures are mechanically and dynamically stable. Therefore, they offer excellent candidates for practical applications over a wide range of temperatures.


Author(s):  
Madhusudan Raghunathan ◽  
Yannick Marandet ◽  
Hugo Bufferand ◽  
Guido Ciraolo ◽  
Philippe Ghendrih ◽  
...  

Abstract The derivation of the multi-temperature generalized Zhdanov closure is provided starting from the most general form of the left hand side of the moment averaged kinetic equation with the Sonine-Hermite polynomial ansatz for an arbitrary number of moments. The process of arriving at the reduced higher-order moment equations, with its assumptions and approximations, is explicitly outlined. The generalized multi-species, multi-temperature coefficients from the authors' previous article are used to compute values of higher order moments such as heat flux in terms of the lower order moments. Transport coefficients and the friction and thermal forces for magnetic confinement fusion relevant cases with the generalized coefficients are compared to the scheme with the single-temperature coefficients previously provided by Zhdanov et al. It is found that the 21N-moment multi-temperature coefficients are adequate for most cases relevant to fusion. Furthermore, the 21N-moment scheme is also tested against the trace approximation to determine the range of validity of the trace approximation with respect to fusion relevant plasmas. Possible refinements to the closure scheme are illustrated as well, in order to account for quantities which might be significant in certain schemes such as the drift approximation.


Author(s):  
Ilija Simonovic ◽  
Danko Bošnjaković ◽  
Zoran Lj Petrovic ◽  
Ron D White ◽  
Sasa Dujko

Abstract Using a multi-term solution of the Boltzmann equation and Monte Carlo simulation technique we study behaviour of the third-order transport coefficients for electrons in model gases, including the ionisation model of Lucas and Saelee and modified Ness-Robson model of electron attachment, and in real gases, including N2 and CF4. We observe negative values in the E/n 0-profiles of the longitudinal and transverse third-order transport coefficients for electrons in CF4 (where E is the electric field and n 0 is the gas number density). While negative values of the longitudinal third-order transport coefficients are caused by the presence of rapidly increasing cross sections for vibrational excitations of CF4, the transverse third-order transport coefficient becomes negative over the E/n 0-values after the occurrence of negative differential conductivity. It is found that the accuracy of the two-term approximation for solving the Boltzmann equation is sufficient to investigate the behaviour of the third-order transport coefficients in N2, while for electrons in CF4 it produces large errors and is not even qualitatively correct . The influence of implicit and explicit effects of electron attachment and ionisation on the third-order transport tensor is investigated. In particular, we discuss the effects of attachment heating and attachment cooling on the third-order transport coefficients for electrons in the modified Ness-Robson model, while the effects of ionisation are studied for electrons in the ionisation model of Lucas and Saelee, N2 and CF4. The concurrence between the third-order transport coefficients and the components of the diffusion tensor, and the contribution of the longitudinal component of the third-order transport tensor to the spatial profile of the swarm are also investigated. For electrons in CF4 and CH4, we found that the contribution of the component of the third-order transport tensor to the spatial profile of the swarm between approximately 50 Td and 700 Td, is almost identical to the corresponding contribution for electrons in N2. This suggests that the recent measurements of third-order transport coefficients for electrons in N2 may be extended and generalized to other gases, such as CF4 and CH4.


Sign in / Sign up

Export Citation Format

Share Document