Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus

2015 ◽  
Vol 151 ◽  
pp. 64-71 ◽  
Author(s):  
K.D. Dunlap ◽  
M.A. Ragazzi
2001 ◽  
Vol 204 (11) ◽  
pp. 1909-1923 ◽  
Author(s):  
Joseph Bastian ◽  
Stephanie Schniederjan ◽  
Jerry Nguyenkim

SUMMARY South American weakly electric fish produce a variety of electric organ discharge (EOD) amplitude and frequency modulations including chirps or rapid increases in EOD frequency that function as agonistic and courtship and mating displays. In Apteronotus leptorhynchus, chirps are readily evoked by the presence of the EOD of a conspecific or a sinusoidal signal designed to mimic another EOD, and we found that the frequency difference between the discharge of a given animal and that of an EOD mimic is important in determining which of two categories of chirp an animal will produce. Type-I chirps (EOD frequency increases averaging 650Hz and lasting approximately 25ms) are preferentially produced by males in response to EOD mimics with a frequency of 50–200Hz higher or lower than that of their own. The EOD frequency of Apteronotus leptorhynchus is sexually dimorphic: female EODs range from 600 to 800Hz and male EODs range from 800 to 1000Hz. Hence, EOD frequency differences effective in evoking type-I chirps are most likely to occur during male/female interactions. This result supports previous observations that type-I chirps are emitted most often during courtship and mating. Type-II chirps, which consist of shorter-duration frequency increases of approximately 100Hz, occur preferentially in response to EOD mimics that differ from the EOD of the animal by 10–15Hz. Hence these are preferentially evoked when animals of the same sex interact and, as previously suggested, probably represent agonistic displays. Females typically produced only type-II chirps. We also investigated the effects of arginine vasotocin on chirping. This peptide is known to modulate communication and other types of behavior in many species, and we found that arginine vasotocin decreased the production of type-II chirps by males and also increased the production of type-I chirps in a subset of males. The chirping of most females was not significantly affected by arginine vasotocin.


2020 ◽  
Author(s):  
Stefan Mucha ◽  
Lauren J. Chapman ◽  
Rüdiger Krahe

AbstractAnthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved-oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (>95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. Below 22% air saturation, A. albifrons actively avoided the hypoxic compartment. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.SummaryThe weakly electric knifefish, Apteronotus albifrons, avoids hypoxia below 22% air saturation. Avoidance correlates with increased swimming activity, but not with a change in electric organ discharge frequency.


Sign in / Sign up

Export Citation Format

Share Document