arginine vasotocin
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 32)

H-INDEX

45
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3086
Author(s):  
Adimoolam Aruna ◽  
Chien-Ju Lin ◽  
Ganesan Nagarajan ◽  
Ching-Fong Chang

Our study showed differential expression of the arginine vasotocin (avt)/isotocin (it) in the brain and pituitary gland of the euryhaline black porgy (Acanthopagrus schlegelii) during osmotic stress. A decrease in serum osmolality and increased cortisol levels were observed after acute transfer from seawater (SW) to freshwater (FW). The increased expressions of avt, avt receptor (avtr: v1a), and isotocin receptor (itr: itr1) transcripts on day 1 and it and itr transcripts on days 7 and 30 were found in the brains and pituitary glands of FW fish. Increased levels of avt mRNA in the diencephalon and avtr mRNA in the pituitary together with serum cortisol on day 1 of FW exposure indicated activation of the hypothalamic–pituitary–interrenal (HPI) axis. The expression levels of avtr and itr after FW transfer were increased in the pituitary on days 7 and 30. Furthermore, in situ hybridization demonstrated spatially differential expression of avt and itr transcripts in nucleus preopticus parvocellularis of pars gigantocellularis (PMgc), magnocellularis (PMmc), and parvocellularis (PMpc) of the preoptic area (POA). Positive signals for avt and it were highly abundant in PMpc after FW exposure. The data suggest involvement of neurohypophysial hormones in the brain (telencephalon and diencephalon) and pituitary for osmotic stress.


Author(s):  
Tobias Backström ◽  
Per-Ove Thörnqvist ◽  
Svante Winberg

AbstractStress and aggression have negative effects on fish welfare and productivity in aquaculture. Thus, research to understand aggression and stress in farmed fish is required. The neuropeptides arginine-vasotocin (AVT) and corticotropin-releasing factor (CRF) are involved in the control of stress and aggression. Therefore, we investigated the effect of agonistic interactions on the gene expression of AVT, CRF and their receptors in juvenile rainbow trout (Oncorhynchus mykiss). The social interactions lead to a clear dominant-subordinate relationship with dominant fish feeding more and being more aggressive. Subordinate fish had an upregulation of the AVT receptor (AVT-R), an upregulation of CRF mRNA levels, and higher plasma cortisol levels. The attenuating effect of AVT on aggression in rainbow trout is proposed to be mediated by AVT-R, and the attenuating effect of the CRF system is proposed to be mediated by CRF.


Author(s):  
Stephanie M Campos ◽  
Selma S Belkasim

Abstract Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homologue vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveals intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.


Author(s):  
Hanna Kalamarz-Kubiak

: The purposes of this review are to promote better use of existing knowledge of marine pollutants especially endocrine-disrupting compounds (EDCs) and to draw attention to the slow progression of the research on the influence of those compounds on arginine vasotocin/isotocin system (AVT/IT) in fish. EDCs are leading to the degradation of fish habitats, reducing their spawning potential and possibly their population parameters (e.g. growth, maturation), by preventing fish from breeding and rebuilding their populations. Therefore, searching for new welfare indicators such as AVT and IT and developing research procedures mimicking environmental conditions using a versatile fish model is extremely important. Fish species such as Zebrafish (Daniorerio) and round goby (Neogobiusmelanostomus) can be recommended as very suitable modelsfor studying estrogenic EDCs on the AVT/IT system and other hormones involved in the neuroendocrine regulation of physiological processes in fish.These studies would not only improve our understanding of the effects of EDCs on vertebrates but could also help safeguard the well-being of aquatic and terrestrial organisms from the harmful effects of these compounds.


2020 ◽  
Vol 29 ◽  
pp. 165-173
Author(s):  
A Rodríguez-Illamola ◽  
JM Míguez ◽  
J Coimbra ◽  
JM Wilson

The present study investigates the response of the hormone arginine vasotocin (AVT), the non-mammalian antidiuretic hormone, to the acclimation of fish to high hydrostatic pressure (5.1 MPa). Two fish species with different osmoregulatory strategies, the lesser spotted dogfish Scyliorhinus canicula, a marine osmoconforming chondrichthyan species adapted for migration to deep waters, and the rainbow trout Oncorhynchus mykiss, a pressure-sensitive freshwater species, were selected for study. Fish were exposed to hydrostatic pressures of either 0.1 (control) or 5.1 MPa in hydrostatic chambers for up to 2 wk at their appropriate salinities. Plasma cortisol was measured in trout, and plasma chloride, sodium and potassium were measured in both fish species. A transient high level of plasma AVT was found in dogfish and in trout after 1 and 3 d of exposure to high hydrostatic pressure, which returned to basal levels by 14 d of exposure. In contrast, pituitary AVT content was reduced after short-term exposure in dogfish, while in trout, lower expression was found in high pressure than in control conditions, independently of exposure time. In dogfish, pituitary AVT levels recovered by 14 d under high hydrostatic pressure. No changes in plasma cortisol (trout) or ions (both species) were observed. These initial increases of the AVT release from the pituitary during fish acclimation to high pressure suggest that it works as a physiological short-term response to reduce water loss and equilibrate ion osmotic balance.


Sign in / Sign up

Export Citation Format

Share Document