scholarly journals Formation of rogue waves on the periodic background in a fifth-order nonlinear Schrödinger equation

2021 ◽  
pp. 127640
Author(s):  
N. Sinthuja ◽  
K. Manikandan ◽  
M. Senthilvelan
2015 ◽  
Vol 70 (5) ◽  
pp. 365-374 ◽  
Author(s):  
Qi-Min Wang ◽  
Yi-Tian Gao ◽  
Chuan-Qi Su ◽  
Yu-Jia Shen ◽  
Yu-Jie Feng ◽  
...  

AbstractIn this article, a fifth-order dispersive nonlinear Schrödinger equation is investigated, which describes the propagation of ultrashort optical pulses, up to the attosecond duration, in an optical fibre. Rogue wave solutions are derived by virtue of the generalised Darboux transformation. Rogue wave structures and interaction are discussed through (i) the analyses on the higher-order rogue waves, the cubic, quartic, quintic, group-velocity, and phase-parameter effects; (ii) a higher-order rogue wave consisting of the first-order rogue waves via the interaction; (iii) characteristics of the rogue waves which are summarised, including the maximum/minimum values of the rogue waves and the number of the first-order rogue waves for composing the higher-order rogue wave; and (iv) spatial-temporal patterns which are illustrated and compared with those of the ‘self-focusing’ nonlinear Schrödinger equation. We find that the quintic terms increase the time of appearance for the first-order rogue waves which form the higher-order rogue wave, and that the quintic terms affect the interaction among the first-order rogue waves, which elongates the distance of appearance for the higher-order rogue wave.


2021 ◽  
pp. 2150194
Author(s):  
Zhi-Qiang Li ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang ◽  
Jin-Jie Yang

Based on inverse scattering transformation, a variable-coefficient fifth-order nonlinear Schrödinger equation is studied through the Riemann–Hilbert (RH) approach with zero boundary conditions at infinity, and its multi-soliton solutions with [Formula: see text] distinct arbitrary-order poles are successfully derived. By deriving the eigenfunction and scattering matrix, and revealing their properties, a RH problem (RHP) is constructed based on inverse scattering transformation. Via solving the RHP, the formulae of multi-soliton solutions are displayed when the reflection coefficient possesses [Formula: see text] distinct arbitrary-order poles. Finally, some appropriate parameters are selected to analyze the interaction of multi-soliton solutions graphically.


Sign in / Sign up

Export Citation Format

Share Document