scholarly journals Measurement of the 3He spin-structure functions and of neutron (3He) spin-dependent sum rules at 0.035 ≤ Q2 ≤ 0.24 GeV2

2020 ◽  
Vol 805 ◽  
pp. 135428 ◽  
Author(s):  
V. Sulkosky ◽  
J.T. Singh ◽  
C. Peng ◽  
J.-P. Chen ◽  
A. Deur ◽  
...  
2010 ◽  
Vol 19 (10) ◽  
pp. 1893-1921 ◽  
Author(s):  
J.-P. CHEN

Nucleon structure study is one of the most important research areas in modern physics and has challenged us for decades. Spin has played an essential role and often brought surprises and puzzles to the investigation of the nucleon structure and the strong interaction. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture in the strong region of the interaction and of the transition region from the strong to the asymptotic-free region. Insight into some aspects of the theory for the strong interaction, Quantum Chromodynamics (QCD), is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e., the Bjorken, Burkhardt–Cottingham, Gerasimov–Drell–Hearn (GDH), and the generalized GDH). These moments are expressed in terms of an operator-product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The higher-twist contributions have been examined through the evolution of these moments as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low-energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation theory calculations agree reasonably well with the first moment of the spin structure function g1 at low momentum transfer of 0.05–0.1 GeV2 but fail to reproduce some of the higher moments, noticeably, the neutron data in the case of the generalized polarizability δLT. The Burkhardt–Cottingham sum rule has been verified with good accuracy in a wide range of Q2 assuming that no singular behavior of the structure functions is present at very high excitation energies.


2003 ◽  
Vol 18 (08) ◽  
pp. 1397-1402
Author(s):  
PETR ZÁVADA

The spin structure functions of the system of quasifree fermions on mass shell are studied in a consistently covariant approach. Comparison with the basic formulas following from the quark-parton model reveals the importance of the fermion motion inside the target for the correct evaluation of the spin structure functions. In particular it is shown, that regarding the moment Γ1, both the approaches are equivalent for the static fermions, but differ by the factor 1/3 in the limit of massles fermions (m ≪ p0, in target rest frame). Some other sum rules are discussed as well.


2005 ◽  
Vol 20 (36) ◽  
pp. 2745-2765 ◽  
Author(s):  
J.-P. CHEN ◽  
A. DEUR ◽  
Z.-E. MEZIANI

The nucleon has been used as a laboratory to investigate its own spin structure and quantum chromodynamics. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture of the transition region from the confinement regime of the theory to its asymptotic freedom regime. Insight for some aspects of the theory is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Gerasimov–Drell–Hearn, Bjorken and Burkhardt–Cottingham). These moments are expressed in terms of an operator-product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The sum rules are verified to good accuracy assuming that no singular behavior of the structure functions is present at very high excitation energies. The higher-twist contributions have been examined through the moments evolution as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low-energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1 at momentum transfer of 0.1 GeV2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT.


1988 ◽  
Vol 38 (5) ◽  
pp. 1633-1635 ◽  
Author(s):  
F. Myhrer ◽  
A. W. Thomas

Sign in / Sign up

Export Citation Format

Share Document