Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defence responses against green mould in citrus fruit

2016 ◽  
Vol 115 ◽  
pp. 18-29 ◽  
Author(s):  
Frida Fallanaj ◽  
Antonio Ippolito ◽  
Angela Ligorio ◽  
Francesca Garganese ◽  
Ciro Zavanella ◽  
...  
2020 ◽  
Author(s):  
Zhiqiang Wang ◽  
Guofeng Yuan ◽  
Huili Pu ◽  
Shuangshuang Shan ◽  
Zhengke Zhang ◽  
...  

Author(s):  
A. H. S. Onions

Abstract A description is provided for Penicillium digitatum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On decaying citrus fruit. DISEASE: Green mould of citrus fruit. Growth is rapid atter infection, the fruit surface becoming covered in a white mould which quickly becomes olive due to the production of the conidia. The fruit then softens and begins to shrink and if exposed to the air becomes a hollow mummified shell. Distinct from Penicillium italicum (see CMI Descript. 99) which is blue-green and finally reduces the fruit to a slimy mass. GEOGRAPHICAL DISTRIBUTION: Common in all citrus producing areas, but widespread as a storage rot of citrus fruit. TRANSMISSION: Common in soil of citrus producing areas and enters the fruit as a wound parasite but will not penetrate undamaged fruit. Said to occur more frequently than P. italicum on fallen fruit on light soil in Israel (31: 603). Spores also particularly abundant in air of citrus packing houses and fruit conditioning rooms (40: 400; 41: 89).


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 89-96 ◽  
Author(s):  
J. L. Smilanick ◽  
M. F. Mansour ◽  
D. Sorenson

Two approaches, fungicide applications to trees before harvest and drenching fruit after harvest, were evaluated to minimize postharvest green mold, caused by Penicillium digitatum, particularly among fruit subjected to ethylene gas after harvest, a practice termed “degreening” that eliminates green rind color. Preharvest applications of thiophanate methyl (TM) controlled postharvest green mold consistently. In five tests, green mold among degreened orange fruit was 16% when TM was applied 1 week before harvest; whereas, among fruit not treated, the incidence was 89.5%. Thiabendazole (TBZ) applied to harvested fruit in bins before degreening also was very effective. TBZ effectiveness was enhanced by mild heating (41°C), adding sodium bicarbonate, and immersing fruit, rather than drenching them, with the solution. With these measures, an isolate of P. digitatum with a high level of TBZ resistance was significantly controlled. In semicommercial tests with naturally inoculated fruit, TBZ and sodium bicarbonate treatment reduced green mold incidence from 11% among untreated orange fruit to 2%. TBZ residues in lemon fruit at 41°C were about twice those treated at 24°C. Neither TM before harvest nor TBZ and sodium bicarbonate applied after harvest influenced green color removal during degreening of orange fruit. Sodium bicarbonate slightly reduced the rate of lemon color change.


2020 ◽  
Author(s):  
Zhiqiang Wang ◽  
Guofeng Yuan ◽  
Huili Pu ◽  
Shuangshuang Shan ◽  
Zhengke Zhang ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 201-212 ◽  
Author(s):  
L. Cerioni ◽  
V. A. Rapisarda ◽  
J. Doctor ◽  
S. Fikkert ◽  
T. Ruiz ◽  
...  

Potassium phosphite (KP) concentrations that inhibited the germination of 50% of Penicillium digitatum conidia were 229, 334, 360, 469, 498, or 580 mg/liter at pH 3, 4, 5, 6, 7, or 8, respectively. Increasing phosphate content in media reduced phosphite toxicity. To control green or blue mold, fruit were inoculated with P. digitatum or P. italicum, then immersed 24 h later in KP, calcium phosphite (CaP), sodium carbonate, sodium bicarbonate, or potassium sorbate for 1 min at 20 g/liter for each at 25 or 50°C. Mold incidence was lowest after potassium sorbate, CaP, or KP treatments at 50°C. CaP was often more effective than KP but left a white residue on fruit. KP was significantly more effective when fruit were stored at 10 or 15°C after treatment compared with 20°C. Acceptable levels of control were achieved only when KP was used in heated solutions or with fungicides. KP was compatible with imazalil (IMZ) and other fungicides and improved their effectiveness. KP increased thiabendazole or IMZ residues slightly. Phosphite residues did not change during storage for 3 weeks, except they declined when KP was applied with IMZ. KP caused no visible injuries or alteration in the rate of color change of citrus fruit in air or ethylene at 5 μl/liter.


Sign in / Sign up

Export Citation Format

Share Document